Земная кора. Мощность земной коры

"Мы не знаем когда точно возник земной магнетизм, однако это могло и произойти вскоре после формирования мантии и внешнего ядра. Для включения геодинамо требуется внешнее затравочное поле, причем необязательно мощное. Эту роль, к примеру, могло взять на себя магнитное поле Солнца, или поле токов, порожденных в ядре за счет термоэлектрического эффекта. В конечном счете, не слишком важно, источников магнетизма хватало. При наличии такого поля и кругового движения токов проводящей жидкости, запуск внутрипланетной динамомашины становится просто неизбежным"

Дэвид Стивенсон, профессор калифорнийского психологического института - крупнейший специалист по планетарному магнетизму

Земля – огромный генератор неисчерпаемой электрической энергии

Еще в 16 веке английский врач и физик Уильям Гильберт высказывал предположение о том, что земной шар является гигантским магнитом, а знаменитый французский ученый Андре Мари Ампер (1775-1836гг.), чьим именем названа физическая величина, определяющая силу электрического тока, доказывал, что наша Планета представляет из себя огромную динамо-машину, вырабатывающую электрический ток. При этом магнитное поле Земли есть производная от этого тока, который обтекает Землю с запада на восток и по этой причине магнитное поле Земли направлено с юга на север. Уже в начале 20-го века, после проведения значительного количества практических экспериментов, знаменитым ученым и экспериментатором Николой Тесла, предположения У. Гильберта и А. Ампера получили свое подтверждение. О некоторых экспериментах Н.Теслы и их практических результатах мы поговорим в дальнейшем, непосредственно в этой статье.

Интересные данные об огромных, по своей величине, электрических токах, протекающих в глубинах океанских вод, сообщил с своей работе "Обходите впадины стороной" (журнал "Изобретатель и рационализатор" №11. 1980г.), кандидат технических наук, автор научных трудов в областях машиностроения, акустики, физики металлов, технологии радиоаппаратуры, автор более 40 изобретений-Альфтан Эрминингельт Алексеевич. Возникает естественный вопрос: "Что из себя представляет эта природная динамомашина и есть ли возможность использования неисчерпаемой энергии этого генератора электрического тока в интересах человека?" Целью данной статьи и является поиск ответов и на этот, и на другие вопросы, связанные с этой тематикой.

Раздел 1 Что является первопричиной возникновения электрического тока внутри Земли? Каковы потенциалы электрического и магнитных полей над поверхностью Земли, обусловленные протеканием электрического тока внутри нашей Планеты?

Внутреннее строение Земли, ее недр и земной коры формировалось в течении миллиардов лет. Под действием собственного гравитационного поля происходил разогрев ее недр, а это привело к дифферентации внутреннего строения недр Земли и ее оболочки - земной коры по агрегатному состоянию, химическому составу и физическим свойствам, в результате чего недра Земли и ее околоземное пространство приобрели следующую структуру:

Ядро Земли, расположенное в центре внутренней земной сферы;
- Мантия;
- Земная кора;
- Гидросфера;
- Атмосфера;
- Магнитосфера

Земная кора, мантия, и внутренняя часть ядра Земли состоят из твердых веществ. Внешняя часть ядра Земли состоит, в основном, из расплавленной массы железа, с добавкой никеля, кремния и небольшого количества других элементов. Основной тип земной коры -материковый и океанический, в переходной зоне от материка к океану развита кора промежуточного строения.

Ядро Земли - центральная, наиболее глубинная геосфера Планеты. Средний радиус ядра около 3.5 тысяч километров. Само ядро состоит из внешней и внутренней части(субъядро). Температура в центре ядра достигает примерно 5000 градусов Цельсия, плотность около 12.5 тонн/м2, давление до 361 Гпа. В последние годы появились новые, дополнительные сведения о ядре Земли. Как было установлено учеными- Полем Ричардсом (земная обсерватория Лимонте-Доэрти) и Сяодун Суном (университет Иллинойса), железное расплавленное ядро Планеты, при при его вращении вокруг земной оси, обгоняет вращение остальной части земного шара на 0.25-0.5 градусов в год. Определен диаметр твердой, внутренней части ядра(субъядро). Он составляет 2.414 тысяч километров(журнал "Открытия и гипотезы", ноябрь. 2005 год. Киев).

В настоящее время высказывается следующая основная гипотеза, объясняющая возникновение электрического тока внутри расплавленной внешней оболочки ядра Земли. Суть этой гипотезы состоит в следующем: Вращение Земли вокруг своей оси приводит к возникновению турбулентности во внешней, расплавленной оболочке ядра, что, в свою очередь, приводит к возникновению электрического тока, протекающего внутри расплавленного железа. Думаю, что в качестве гипотезы, можно высказать и следующее предположение. Так как внешняя, расплавленная часть оболочки ядра Земли находится в постоянном движении как относительно своего субъядра, так и относительно наружной части-Мантии Земли, и этот процесс протекает в течении очень длительного периода времени, произошла наэлектролизованность расплавленной, внешней части ядра Земли. В результате процесса наэлектролизованности возникло направленное движение свободных электронов, в огромнейшем количестве находящихся в расплавленной массе железа, в результате чего в замкнутом контуре внешнего ядра образовался огромный по своей величине электрический ток, по всей видимости его величину можно оценить не менее чем в сотни миллионов ампер и выше. В свою очередь, вокруг силовых линий электрического тока образовались силовые линии магнитного поля, сдвинутые относительно силовых линий электрического тока на 90 градусов. Пройдя через огромную толщу Земли, напряженность электрического и магнитных полей в значительной мере уменьшилась. И если говорить конкретно о напряженности силовых линий магнитного поля Земли, то на ее магнитных полюсах напряженность магнитного поля Земли составляет по величине 0.63 гаусса.

Кроме вышеприведенных гипотез, надеюсь, уместно будет привести и результаты исследований французских ученных, о чем поведал в статье "Ядро Земли" автор Леонид Попов. Полный текст статьи размещен в Интернете, а я приведу только небольшую часть указанного текста.

"Группа исследователей из университетов Жозефера, Фурье и Лиона утверждают, что внутреннее ядро Земли постоянно кристаллизируется на западе и плавится на востоке. Вся масса внутреннего ядра медленно смещается от западной стороны к восточной со скоростью 1.5 см в год. Возраст внутреннего твердого тела ядра оценивается в 2-4 млрд лет, в то время как земли- 4.5 млрд лет.

Столь мощные процессы затвердевания и плавления очевидно, не могут не сказаться на конвективных потоках в ядре внешнем. А значит они затрагивают и планетарную динамо-машину и земное магнитное поле и поведение мантии и движение материков.

Не тут ли кроется разгадка несовпадения скорости вращения ядра и остальной планеты и путь к объяснению ускоряющего сдвига магнитных полюсов?" (Интернет, тема статьи "Ядро Земли постоянно переваривает само себя". Автор Леонид Попов. 9 августа 2010 года)

Согласно уравнениям Джеймса Максвелла (1831-1879гг.), вокруг силовых линий магнитного поля образуются силовые линии электрического тока, совпадающие по своему направлению с направлением движения тока внутри наружного расплавленного ядра Планеты. Следовательно, как внутри "тела" Земли, так и вокруг околоземной поверхности должно иметь место наличие силовых линий электрического поля, причем, чем дальше электрическое(как и магнитное поле) поле находится от ядра Земли, тем ниже напряженность его силовых линий. Так фактически должно быть и этому предположению имеется реальное подтверждение.

Откроем "Справочник по физике" автора А.С. Еноковича (Москва. Изд "Просвещение", 1990 год) и обратимся к данным, приведенным в таблице 335 "Физические параметры Земли". Читаем:
- Напряженность электрического поля
непосредственно у поверхности Земли - 130 вольт/ м;
- На высоте 0.5 км на поверхностью Земли - 50 вольт/ м;
- На высоте 3 км над поверхностью Земли - 30 вольт/ м;
- На высоте 12 км над поверхностью Земли - 2.5 вольт/ м;

Здесь же дана величина электрического заряда Земли- 57-10 в четвертой степени кулон.

Напомним, что единица количества электричества в 1 кулон равна количеству электричества, проходящего через поперечное сечение при силе тока 1 ампер за время 1 сек.

Практически во всех источниках, несущих информацию о магнитном и электрическом полях Земли отмечается, что они носят пульсирующий характер.

Раздел 2. Причины возникновения пульсаций магнитного и электрического силовых полей Планеты.

Известно, что напряженность магнитного поля Земли не постоянна и возрастает с широтой. Максимальная напряженность силовых линий магнитного поля Земли наблюдается на ее полюсах, минимальная- на экваторе Планеты. Не остается она постоянной и в течении суток на всех широтах Земли. Суточные пульсации магнитного поля вызваны целым рядом причин: Циклическими изменениями солнечной активности; орбитальным движением Земли вокруг Солнца; суточным вращением Земли вокруг собственной оси; воздействием на расплавленную массу внешнего ядра Земли сил тяготений (гравитационных сил) других планет солнечной системы. Вполне понятно, что пульсации напряженности силовых линий магнитного поля, вызывают, в свою очередь, и пульсации напряженности электрического поля Планеты. Наша Земля, при орбитальном вращении вокруг Солнца, по почти круговой орбите, то приближается на минимальные расстояния к другим планетам солнечной системы, совершающим орбитальное движение вокруг Солнца по своим орбитам, то удаляется от них на максимальные расстояния. Рассмотрим конкретно, как изменяются минимальные и максимальные расстояния между Землей и другими планетами Солнечной системы, при их движении по своим орбитам вокруг Солнца:

Минимальное расстояние между Землей и Меркурием – 82х10 в 9-й степени м;
-Максимальное расстояние между ними – 217х10 в 9-й степени м;
-Минимальное расстояние между Землей и Венерой – 38х10 в 9-й степени м;
-Максимальное расстояние между ними – 261х10 в 9-й степени м;
-Минимальное расстояние между Землей и Марсом – 56х10 в 9-й степени м;
-Максимальное расстояние между ними – 400х10 в 9-й степени м;
-Минимальное расстояние между Землей и Юпитером – 588х10 в 9-й степени м;
-Максимальное расстояние между ними – 967х10 в 9-й степени м;
-Минимальное расстояние между Землей и Сатурном – 1199х10 в 9-й степени м;
-Максимальное расстояние между ними – 1650х10 в 9-й степени м;
-Минимальное расстояние между Землей и Ураном – 2568х10 в 9-й степени м;
-Максимальное расстояние между ними – 3153х10 в 9-й степени м;
-Минимальное расстояние между Землей и Нептуном – 4309х10 в 9-й степени м;
-Максимальное расстояние между ними – 4682х10 в 9-й степени м;
-Минимальное расстояние между Землей и Луной – 3.56х10 в 8-й степени м;
-Максимальное расстояние между ними – 4.07х10 в 8-й степени м;
-Минимальное расстояние между Землей и Солнцем – 1.47х10 в 11-й степени м;
-Максимальное расстояние между ними – 1.5х10 в 11-й степени м;

Используя известную формулу Ньютона и подставляя в нее данные о максимальных и минимальных расстояниях между планетами Солнечной системы и Землей, данные о минимальном и максимальном расстояниях между Землей и Луной, Землей и Солнцем, а также справочные данные о массах планет солнечной системы, Луны и Солнца и данные о величине гравитационной постоянной, определим минимальные и максимальные величины сил тяготений(гравитационных сил), воздействующих на нашу Планету, а следовательно, на ее расплавленное ядро, при орбитальном движении Земли вокруг Солнца и при орбитальном движении Луны вокруг Земли:

Величина силы тяготения между Меркурием и Землей, соответствующая минимальному расстоянию между ними - 1.77х10 в 15-й степени кг;
-Соответствующая максимальному расстоянию между ними - 2.5х10 в 14-й степени кг;
-Величина силы тяготения между Венерой и Землей, соответствующая минимальному расстоянию между ними - 1.35х10 в 17-й степени кг;
-Соответствующая максимальному расстоянию между ними -2.86х10 в 15-й степени кг;
-Величина силы тяготения между Марсом и Землей, соответствующая минимальному расстоянию между ними – 8.5х10 в 15-й степени кг;
-Соответствующая максимальному расстоянию между ними – 1.66х10 в 14-й степени кг;
-Величина силы тяготения между Юпитером и Землей, соответствующая минимальному расстоянию между ними – 2.23х10 в 17-й степени кг;
-Соответствующая максимальному расстоянию между ними – 8.25х10 в 16-й степени кг; -Величина силы тяготения между Сатурном и Землей, соответствующая минимальному расстоянию между ними – 1.6х10 в 16-й степени кг;
-Соответствующая максимальному расстоянию между ними – 8.48х10 в 15-й степени кг;
-Величина силы тяготения между Ураном и Землей, соответствующая минимальному расстоянию между ними – 5.31х10 в 14-й степени кг;
-Соответствующая максимальному расстоянию между ними – 3.56х10 в 16-й степени кг;
-Величина силы тяготения между Нептуном и Землей, соответствующая минимальному расстоянию между ними – 2.27х10 в 14-й степени кг;
-Соответствующая максимальному расстоянию между ними – 1.92х10 в 14-й степени кг;
-Величина силы тяготения между Луной и Землей, соответствующая минимальному расстоянию между ними – 2.31х10 в 19-й степени кг;
-Соответствующая максимальному расстоянию между ними – 1.77х10 в 19-й степени кг;
-Величина силы тяготения между Солнцем и Землей, соответствующая минимальному расстоянию между ними – 3.69х10 в 21-й степени кг;
-Соответствующая максимальному расстоянию между ними – 3.44х10 в 21-й степени кг;

Видно какие огромные величины сил тяготений воздействуют на внешнее, расплавленное ядро Земли. Можно только представить, как эти возмущающие силы, воздействуя одновременно, с разных сторон на эту расплавленную массу железа, заставляют ее то сжиматься, то увеличивать свое сечение и, как следствие, вызывают пульсации напряженностей как электрического, так и магнитного полей Планеты. Эти пульсации носят периодический характер, спектр их частот лежит в диапазонах инфразвуковых и очень низких частот.

Также на процесс образования пульсаций напряженностей электрического и магнитных полей влияет, правда в меньшей степени, суточное вращение Земли вокруг собственной оси. Действительно, силы тяготений планет, Луны, Солнца, находящиеся в данный конкретный период суток со стороны фронтальной поверхности Земли, оказывают на расплавленную массу ядра Планеты несколько более возмущающее воздействие, чем в этот же период суточного времени на обратную(тыльную) сторону массы ядра. При этом, часть ядра, направленная в сторону Солнца(Луны, планеты) вытягивается в сторону объекта возмущающего воздействия, а тыльная(обратная) сторона расплавленной массы железа, в это же время сжимается в сторону центрального твердого субъядра Земли, уменьшая свое сечение.

Раздел 3 Можно ли использовать электрическое поле Земли в практических целях?

Прежде чем получить ответ на этот вопрос, попытаемся провести некий мысленный виртуальный эксперимент, суть которого заключается в следующем. Разместим на высоте 0.5 км. от поверхности Земли(разумеется мысленно) металлический электрод, роль которого будет выполнять плоская металлическая пластина, площадью 1х1 м2. Сориентируем эту пластину относительно силовых линий напряженности электрического поля Земли таким образом, чтобы они пронизывали ее поверхность, то есть поверхность этой пластины должна быть установлена перпендикулярно силовым линиям электрического поля, направленным с запада на восток. Второй, точно такой же электрод, разместим таким же образом непосредственно у поверхности Земли. Произведем замер разности электрических потенциалов между этими электродами. Согласно данным, приведенным выше из "Справочника по физике", этот измеренный электрический потенциал должен быть 130в-50в=80 вольт.

Продолжим проведение мысленного эксперимента, несколько изменив начальные условия. Металлический электрод, который находился непосредственно у поверхности Земли, установим на ее поверхность и тщательно заземлим. Второй металлический электрод опустим а шахту на глубину 0.5км и, как в предыдущем случае, сориентируем его относительно силовых линий электрического поля Земли. Вновь произведем замеры величины электрического потенциала между этими электродами. Мы должны увидеть значительную разницу в величинах измеренных потенциалов электрического поля Земли. И чем глубже, внутрь Земли мы будем опускать второй электрод, тем выше будут величины измеренных разностей потенциалов электрического поля Планеты. И если мы бы смогли измерить разность электрических потенциалов между внешним жидким ядром Земли и ее поверхностью, то, по всей видимости, эти разности потенциалов как по напряжению, так и по мощности должно было бы хватить, чтобы обеспечить потребности в электроэнергии всего населения нашей Планеты.

Но все о чем мы рассуждали, к сожалению пока что рассматривается в области проведения виртуальных, мысленных экспериментов. А теперь обратимся к результатам практических экспериментов, которые были проведены в начале 20 века Николой Тесла и опубликованы в его работах.

В своей лаборатории в Колорадо - Спрингзе (США), построенной в районе Уорденклифа, Н.Тесла организовывал проведение экспериментов, позволяющих передавать информацию через толщу Земли на ее противоположную сторону. В качестве основы для успешного проведения задуманного эксперимента Н.Тесла предполагал использовать электрический потенциал Планеты, так как несколько раннее он убедился в том, что Земля электрически заряжена.

Для проведения намеченных экспериментов по его предложениям были построены башни-антенны, высотой до 60-ти метров, с медной полусферой на их верхушках. Эти медные полусферы играли роль того самого металлического электрода, о котором мы говорили выше. Основания построенных башен уходили под землю на глубину 40 метров, где заглубленная поверхность земли играла роль второго электрода. Результат экспериментов Н.Тесла описал в опубликованной им статье "Беспроводная передача электрической энергии" (5 марта 1904 года). Он писал: "Возможно не только отправлять без проводов телеграфные сообщения, но и доносить через весь земной шар слабые модуляции человеческого голоса и, более того, передавать энергию в неограниченных количествах на любые расстояния и без потерь"

И далее, в этой же статье: "В середине июня, когда шла подготовка к другой работе, я настроил один из моих понижающих трансформаторов с целью определения новаторским образом, экспериментально, электрический потенциал земного шара и изучения его периодических и случайных колебаний. Это сформировало часть плана, тщательно сформированного заранее. Высокочувствительный, автоматически приводящийся в действие прибор, контролирующий записывающее устройство, был включен во вторичную цепь, тогда как первичная была соединена с поверхностью Земли…Оказалось, что Земля, в буквальном смысле этого слова, живет электрическими колебаниями".

Убедительное доказательство того, что Земля действительно является огромным природным генератором неисчерпаемой электрической энергии и эта энергия носит пульсирующий гармоничный характер. В некоторых немногочисленных статьях, посвященных рассматриваемой теме, высказываются предположения о том, что землетрясения, взрывы в шахтах и на нефтедобывающих морских платформах, все это результаты проявления земного электричества.

На нашей планете значительное количество пустотелых природных образований, уходящих в глубь Земли, есть и значительное количество глубоких шахт, где можно провести практические исследования по определению возможностей использования электрической энергии, вырабатываемой природным генератором нашей Планеты. Остается только надеяться, что такие исследования когда-то будут проведены.

Раздел 4. Что происходит с электрическим полем Земли при разряде линейной молнии на ее поверхность?

Результаты опытов, проведенных Н.Тесла убедительно доказывают, что наша Планета есть природный генератор неисчерпаемой электрической энергии. Причем максимальный потенциал этой энергии заключен внутри расплавленной металлической оболочки внешнего ядра Планеты и убывает по мере приближения к ее поверхности и за пределами поверхности Земли. Результаты экспериментов, проведенных Н.Тесла также убедительно доказывают, что электрическое и магнитное поля Земли носят периодический пульсирующий характер, причем спектр частот пульсаций лежит в диапазоне инфразвуковых и очень низких частот. А это означает следующее - воздействуя на пульсирующее электрическое поле Земли с помощью внешнего источника гармоничных колебаний, близких или равных по частоте собственным пульсациям электрического поля Земли, можно добиться явления их резонанса. Н.Тесла писал: "При сокращении электрических волн до незначительного количества и достижения необходимых условий резонанса, схема(о которой говорилось выше) будет работать как огромный маятник, сохраняя неопределенный период времени энергию первоначальных возбуждающих импульсов, и последствия воздействия на Землю и ее проводящую атмосферу единых гармоничных колебаний излучения, которые, как показывают испытания в реальных условиях, могут развиться до такой степени, что превзойдут достигнутые природными проявлениями статистического электричества " (Статья "Беспроводная передача электрической энергии" 6 марта 1904 г).

А что из себя представляет резонанс колебаний? "Резонанс – это резкое возрастание амплитуды установившихся вынужденных колебаний при приближении частоты внешнего гармоничного воздействия к частоте одного из собственных колебаний системы " (Советский энциклопедический словарь, изд. "Советская энциклопедия". Москва. 1983г.)

Никола Тесла, в своих экспериментах, в качестве источника внешнего воздействия для достижений условий резонанса внутри Земли, использовал разряды как природных, так и искусственных линейных молний, которые он и его ассистенты, экспериментально создавали в своей лаборатории.
Что же из себя представляет линейная молния и каким образом она может быть использована в качестве внешнего источника гармоничных колебаний, способных создавать резонанс колебаний внутри Земли?

Откроем "Справочник по физике", таблица 240. Физические параметры молнии:
- длительность(средняя) вспышки разряда молнии, С – 0.2 сек.
(Примечание. Молния воспринимается глазом как одна вспышка, в действительности представляет собой прерывистый разряд, состоящий из отдельных разрядов-импульсов, число которых 2-3, но может доходить и до 50-ти).
- диаметр(средний) канала молнии, см – 16.
- сила тока молнии(типичное значение), А – 2х10 в 4-й степени.
- средняя длина молнии(между облаком и Землей), км – 2 – 3.
- разность потенциалов при возникновении молнии, В – до 4х10 в 9-й степени.
- число грозовых разрядов над Землей в 1 секунду – около 100.
Таким образом, молния представляет собой электрический импульс, огромной мощности и малой длительности действия. Специалисты, работающие в области импульсной техники могут подтвердить следующий факт- чем меньше длительность импульса(чем короче импульс), тем богаче спектр частот гармоничных электрических колебаний, формирующих этот импульс. Следовательно молния, представляющая собой кратковременный импульс электрической энергии, включает в себя ряд гармоничных электрических колебаний, лежащих в широком диапазоне частот, в том числе и в диапазоне инфронизких и очень низких частот. При этом максимальная мощность импульса распределяется как раз в области именно этих частот. А этот факт означает, что гармоничные колебания, возникающие при разряде линейной молнии на поверхность Земли, могут обеспечить возникновение резонанса при взаимодействии с собственными периодическими колебаниями(пульсациями) электрического поля Земли. В статье "Управляемая молния" от 8 марта 1904 года Н.Тесла писал: "Открытие земных стоячих волн показывает, что несмотря на ее огромные размеры(имеется в виду размеры Земли), целую планету можно подвергнуть в резонансные колебания как маленький камертон, что электрические колебания, приведенные в соответствии с ее физическими характеристиками и размерами, проходят через нее беспрепятственно". Известно, что в своих экспериментах, для достижения явления резонанса, Н.Тесла и его помощники создавали искусственные линейные молнии(искровые разряды) длиной чуть более 3-х метров с очень малой длительностью действия) и электрическим потенциалом - более пятидесяти миллионов вольт.

И тут возникает очень интересный вопрос: "А не является ли Тунгусский метеорит следствием резонансного воздействия природной линейной молнии на электрическое поле Земли?" Здесь не рассматривается вопрос влияния искусственных линейных молний, создаваемых в лаборатории Н.Тесла на появление Тунгусского метеорита, так как во время, связанное с событиями Тунгусского метеорита, лаборатория Н.Теслы уже не работала.

Вот как описывают события связанные с, так называемым, Тунгусским метеоритом свидетели этого явления. 17(30) июня 1908 года около 7 часов утра, над территорией бассейна реки Енисей пронесся громадных размеров огненный шар. Полет его завершился огромной силы взрывом, который произошел на высоте от 7 до 10 км от поверхности Земли. Мощность взрыва, как позже определили специалисты, примерно соответствовала мощности взрыва водородной бомбы от 10 до 40 мегатонн тротилового эквивалента.

Обратим особое внимание на то, что это событие произошло в летний период времени, то есть в период образований частых летних гроз, сопровождаемых разрядами молний. А нам известно, что именно разряды линейных молний на поверхность Земли могли вызвать резонансные явления внутри земного шара, что, в свою очередь, могло способствовать образованию шаровой молнии огромной электрической мощности. В качестве подтверждения высказанной, и не только мною, версии обратимся к "Энциклопедическому словарю" : "Шаровая молния – светящийся сфероид диаметром от 10см. и более, образуется обычно вслед за ударом линейной молнии и состоящий, по всей видимости, из неравновесной плазмы". Но это еще не все. Обратимся к статье Н.Теслы "Разговор с планетой " от 9 февраля 1901 года. Приведем отрывок из этой статьи: "Я уже продемонстрировал с помощью решающих испытаний практическую осуществляемость передачи сигнала с помощью моей системы от одной до другой точки земного шара, неважно насколько удаленных друг от друга, и вскорости я обращу неверующих в свою веру. У меня есть все причины поздравить себя с тем, что в ходе этих экспериментов, многие из которых были исключительно тонкими и рискованными, ни я сам, ни мои ассистенты не получили никаких повреждений. Во время работы с этими мощными электрическими колебаниями иногда происходили самые необычные явления. Из-за некоторой интерференции колебаний на огромные расстояния могли выскакивать настоящие огненные шары, и если бы кто-то находился на их пути или вблизи, он был бы моментально уничтожен".

Как видим, пока еще рано исключать возможность участия шаровой молнии в вышеописанных событиях, связанных с Тунгусским метеоритом. Частые летние грозы, приходящиеся на это время года, удары линейных молний могли быть причиной возникновения шаровой молнии, причем она могла возникнуть далеко за приделами бассейна реки Енисей и затем, "путешествуя" с огромной скоростью вдоль силовых линий электрического поля Земли, оказаться в том районе, где и произошли указанные выше события.

Заключение
Природные энергетические ресурсы Планеты неумолимо сокращаются. Идут активные поиски альтернативных источников энергии, позволяющих прийти на замену исчезающим. Думается, что настало время заняться глубокими исследованиями, как теоретически так и практически, в определении возможности использования электрического потенциала природного генератора электрической энергии в интересах Человека. И если подтвердиться, что такая возможность существует, и, при этом земному генератору, в результате использования его энергии, не будет нанесен вред, то вполне возможно, что электрическое поле Планет послужит людям в качестве одного из альтернативных источников энергии.

Клещевич В.А. Сентябрь-ноябрь 2011 года (г. Харьков)

Существует два основных типа земной коры: океанская и материковая. Выделяется также переходный тип земной коры.

Океанская земная кора. Мощность океанской земной коры в современную геологическую эпоху колеблется от 5 до 10 км. Она состоит из следующих трех слоев:

  • 1) верхний тонкий слой морских осадков (мощность не более 1 км);
  • 2) средний базальтовый слой (мощность от 1,0 до 2,5 км);
  • 3) нижний слой габбро (мощность около 5 км).

Материковая (континентальная) земная кора. Материковая земная кора имеет более сложное строение и большую мощность, чем океанская земная кора. Ее мощность в среднем составляет 35-45 км, а в горных странах увеличивается до 70 км. Она состоит также их трех слоев, но существенно отличается от океанской:

  • 1) нижний слой, сложенный базальтами (мощность около 20 км);
  • 2) средний слой занимает основную толщу материковой коры и условно называется гранитным. Он сложен в основном гранитами и гнейсами. Под океаны этот слой не распространяется;
  • 3) верхний слой - осадочный. Его мощность в среднем составляет около 3 км. В некоторых районах мощность осадков достигает 10 км (например, в Прикаспийской низменности). В отдельных районах Земли осадочный слой отсутствует вообще и на поверхность выходят гранитный слой. Такие районы называются щитами (например, Украинский щит, Балтийский щит).

На материках в результате выветривания горных пород образуется геологическая формация, получившая название коры выветривания.

Гранитный слой от базальтового отделен поверхностью Конрада, на которой скорость сейсмических волн возрастает от 6,4 до 7,6 км/ сек.

Граница между земной корой и мантией (как на материках, так и на океанах) проходит по поверхности Мохоровичича (линия Мохо). Скорость сейсмических волн на ней скачкообразно увеличивается до 8 км/ час.

Кроме двух основных типов - океанского и материкового - есть также участки смешанного (переходного) типа.

На материковых отмелях или шельфах кора имеет мощность около 25 км и в целом сходна с материковой корой. Однако в ней может выпадать слой базальта. В Восточной Азии в области островных дуг (Курильские острова, Алеутские острова, Японские острова и др.) земная кора переходного типа. Наконец, весьма сложна и пока мало изучена земная кора срединных океанических хребтов. Здесь нет границы Мохо, и вещество мантии по разломам поднимается в кору и даже на ее поверхность.

Понятие «земная кора» следует отличать от понятия «литосфера». Понятие «литосфера» является более широким, чем «земная кора». В литосферу современная наука включает не только земную кору, но и самую верхнюю мантию до астеносферы, то есть до глубины примерно около 100 км.

Понятие об изостазии . Изучение распределения силы тяжести показало, что все части земной коры - материки, горные страны, равнины - уравновешены на верхней мантии. Это уравновешенное их положение называется изостазией (от лат. isoc - ровный, stasis - положение). Изостатическое равновесие достигается благодаря тому, что мощность земной коры обратно пропорциональна ее плотности. Тяжелая океаническая кора тоньше более легкой материковой.

Изостазия - в сущности это даже и не равновесие, а стремление к равновесию, непрерывно нарушаемое и вновь восстанавливаемое. Так, например, Балтийский щит после стаивания материковых льдов плейстоценового оледенения поднимается примерно на 1 метр в столетие. Площадь Финляндии все время увеличивается за счет морского дна. Территория Нидерландов, наоборот, понижается. Нулевая линия равновесия проходит в настоящее время несколько южнее 60 0 с.ш. Современный Санкт-Петербург находится примерно на 1,5 м выше, чем Санкт-Петербург времен Петра Первого. Как показывают данные современных научных исследований, даже тяжесть больших городов оказывается достаточной для изостатического колебания территории под ними. Следовательно, земная кора в зонах больших городов весьма подвижна. В целом же рельеф земной коры является зеркальным отражением поверхности Мохо, подошвы земной коры: возвышенным участкам соответствуют углубления в мантию, пониженным - более высокий уровень ее верхней границы. Так, под Памиром глубина поверхности Мохо составляет 65 км, а в Прикаспийской низменности - около 30 км.

Термические свойства земной коры . Суточные колебания температуры почвогрунтов распространяются на глубину 1,0-1,5 м, а годовые в умеренных широтах в странах с континентальным климатом до глубины 20-30 м. На той глубине, где прекращается влияние годовых колебаний температуры вследствие нагревания земной поверхности Солнцем, находится слой постоянной температуры грунта. Он называется изотермическим слоем. Ниже изотермического слоя вглубь Земли температура повышается, и это вызывается уже внутренней теплотой земных недр. В формировании климатов внутреннее тепло не участвует, но оно служит энергетической основой всех тектонических процессов.

Число градусов, на которое увеличивается температура на каждые 100 м глубины называется геотермическим градиентом. Расстояние в метрах, при опускании на которое температура возрастает на 1 0 С называется геотермической ступенью. Величина геотермической ступени зависит от рельефа, теплопроводности горных пород, близости вулканических очагов, циркуляции подземных вод и др. В среднем геотермическая ступень равна 33 м. В вулканических областях геотермическая ступень может быть равной всего около 5 м, а в геологически спокойных областях (например, на платформах) она может достигать 100 м.

Характерная черта эволюции Земли — дифференциация вещества, выражением которой служит оболочечное строение нашей планеты. Литосфера, гидросфера, атмосфера, биосфера образуют основные оболочки Земли, отличающиеся химическим составом, мощностью и состоянием вещества.

Внутреннее строение Земли

Химический состав Земли (рис. 1) схож с составом других планет земной группы, например Венеры или Марса.

В целом преобладают такие элементы, как железо, кислород, кремний, магний, никель. Содержание легких элементов невелико. Средняя плотность вещества Земли 5,5 г/см 3 .

О внутреннем строении Земли достоверных данных весьма мало. Рассмотрим рис. 2. Он изображает внутреннее строение Земли. Земля состоит из земной коры, мантии и ядра.

Рис. 1. Химический состав Земли

Рис. 2. Внутреннее строение Земли

Ядро

Ядро (рис. 3) расположено в центре Земли, его радиус составляет около 3,5 тыс км. Температура ядра достигает 10 000 К, т. е. она выше, чем температура внешних слоев Солнца, а его плотность составляет 13 г/см 3 (сравните: вода — 1 г/см 3). Ядро предположительно состоит из сплавов железа и никеля.

Внешнее ядро Земли имеет большую мощность, чем внутреннее (радиус 2200 км) и находится в жидком (расплавленном) состоянии. Внутреннее ядро подвержено колоссальному давлению. Вещества, слагающие его, находятся в твердом состоянии.

Мантия

Мантия — геосфера Земли, которая окружает ядро и составляет 83 % от объема нашей планеты (см. рис. 3). Нижняя ееграница располагается на глубине 2900 км. Мантия разделяется на менее плотную и пластичную верхнюю часть (800-900 км), из которой образуется магма (в переводе с греческого означает «густая мазь»; это расплавленное вещество земных недр — смесь химических соединений и элементов, в том числе газов, в особом полужидком состоянии); и кристаллическую нижнюю, тол- шиной около 2000 км.

Рис. 3. Строение Земли: ядро, мантия и земная кора

Земная кора

Земная кора - внешняя оболочка литосферы (см. рис. 3). Ее плотность примерно в два раза меньше, чем средняя плотность Земли, — 3 г/см 3 .

От мантии земную кору отделяет граница Мохоровичича (ее часто называют границей Мохо), характеризующаяся резким нарастанием скоростей сейсмических волн. Она была установлена в 1909 г. хорватским ученым Андреем Мохоровичичем (1857- 1936).

Поскольку процессы, происходящие в самой верхней части мантии, влияют на движения вещества в земной коре, их объединяют под общим названием литосфера (каменная оболочка). Мощность литосферы колеблется от 50 до 200 км.

Ниже литосферы располагается астеносфера — менее твердая и менее вязкая, но более пластичная оболочка с температурой 1200 °С. Она может пересекать границу Мохо, внедряясь в земную кору. Астеносфера — это источник вулканизма. В ней находятся очаги расплавленной магмы, которая внедряется в земную кору или изливается на земную поверхность.

Состав и строение земной коры

По сравнению с мантией и ядром земная кора представляет собой очень тонкий, жесткий и хрупкий слой. Она сложена более легким веществом, в составе которого в настоящее время обнаружено около 90 естественных химических элементов. Эти элементы не одинаково представлены в земной коре. На семь элементов — кислород, алюминий, железо, кальций, натрий, калий и магний — приходится 98 % массы земной коры (см. рис. 5).

Своеобразные сочетания химических элементов образуют различные горные породы и минералы. Возраст самых древних из них насчитывает не менее 4,5 млрд лет.

Рис. 4. Строение земной коры

Рис. 5. Состав земной коры

Минерал — это относительно однородное по своему составу и свойствам природное тело, образующееся как в глубинах, так и на поверхности литосферы. Примерами минералов служат алмаз, кварц, гипс, тальк и др. (Характеристику физических свойств различных минералов вы найдете в приложении 2.) Состав минералов Земли приведен на рис. 6.

Рис. 6. Общий минеральный состав Земли

Горные породы состоят из минералов. Они могут слагаться как из одного, так и из нескольких минералов.

Осадочные горные породы - глина, известняк, мел, песчаник и др. — образовались путем осаждения веществ в водной среде и на суше. Они лежат пластами. Геологи называют их страницами истории Земли, так как но ним можно узнать о природных условиях, существовавших на нашей планете в давние времена.

Среди осадочных горных пород выделяют органогенные и неорганогенные (обломочные и хемогенные).

Органогенные горные породы образуются в результате накопления останков животных и растений.

Обломочные горные породы образуются в результате выветривания, псрсотложсния с помощью воды, льда или ветра продуктов разрушения ранее возникших горных пород (табл. 1).

Таблица 1. Обломочные горные породы в зависимости от размеров обломков

Название породы

Размер облом кон (частиц)

Более 50 см

5 мм — 1 см

1 мм — 5 мм

Песок и песчаники

0,005 мм — 1 мм

Менее 0,005 мм

Хемогенные горные породы формируются в результате осаждения из вод морей и озер растворенных в них веществ.

В толще земной коры из магмы образуются магматические горные породы (рис. 7), например гранит и базальт.

Осадочные и магматические породы при погружении на большие глубины под влиянием давления и высоких температур подвергаются значительным изменениям, превращаясь в метаморфические горные породы. Так, например, известняк превращается в мрамор, кварцевый песчаник — в кварцит.

В строении земной коры выделяют три слоя: осадочный, «гранитный», «базальтовый».

Осадочный слой (см. рис. 8) образован в основном осадочными горными породами. Здесь преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы. В осадочном слое встречаются залежи таких полезных ископаемых, как каменный уголь, газ, нефть. Все они органического происхождения. Например, каменный уголь -это продукт преобразования растений древних времен. Мощность осадочного слоя колеблется в широких пределах — от полного отсутствия в некоторых районах суши до 20-25 км в глубоких впадинах.

Рис. 7. Классификация горных пород по происхождению

«Гранитный» слой состоит из метаморфических и магматических пород, близких по своим свойствам к граниту. Наиболее распространены здесь гнейсы, граниты, кристаллические сланцы и др. Встречается гранитный слой не везде, но на континентах, где он хорошо выражен, его максимальная мощность может достигать нескольких десятков километров.

«Базальтовый» слой образован горными породами, близкими к базальтам. Это метаморфизованные магматические породы, более плотные по сравнению с породами «гранитного» слоя.

Мощность и вертикальная структура земной коры различны. Выделяют несколько типов земной коры (рис. 8). Согласно наиболее простой классификации различают океаническую и материковую земную кору.

Континентальная и океаническая кора различны по толщине. Так, максимальная толщина земной коры наблюдается под горными системами. Она составляет около 70 км. Под равнинами мощность земной коры составляет 30-40 км, а под океанами она наиболее тонкая — всего 5-10 км.

Рис. 8. Типы земной коры: 1 — вода; 2- осадочный слой; 3 — переслаивание осадочных пород и базальтов; 4 — базальты и кристаллические ультраосновные породы; 5 — гранитно-метаморфический слой; 6 — гранулитово-базитовый слой; 7 — нормальная мантия; 8 — разуплотненная мантия

Различие континентальной и океанической земной коры по составу пород проявляется в том, что гранитный слой в океанической коре отсутствует. Да и базальтовый слой океанической коры весьма своеобразен. По составу пород он отличен от аналогичного слоя континентальной коры.

Граница суши и океана (нулевая отметка) не фиксирует перехода континентальной земной коры в океаническую. Замещение континентальной коры океанической происходит в океане примерно на глубине 2450 м.

Рис. 9. Строение материковой и океанической земной коры

Выделяют и переходные типы земной коры — субокеаническую и субконтинентальную.

Субокеаническая кора расположена вдоль континентальных склонов и подножий, может встречаться в окраинных и средиземных морях. Она представляет собой континентальную кору мощностью до 15-20 км.

Субконтинентальная кора расположена, например, на вулканических островных дугах.

По материалам сейсмического зондирования - скорости прохождения сейсмических волн — мы получаем данные о глубинном строении земной коры. Так, Кольская сверхглубокая скважина, впервые позволившая увидеть образцы пород с глубины более 12 км, принесла много неожиданного. Предполагалось, что на глубине 7 км должен начаться «базальтовый» слой. В действительности же он обнаружен не был, а среди горных пород преобладали гнейсы.

Изменение температуры земной коры с глубиной. Приповерхностный слой земной коры имеет температуру, определяемую солнечным теплом. Это гелиометрический слой (от греч. гелио — Солнце), испытывающий сезонные колебания температуры. Средняя его мощность — около 30 м.

Ниже расположен еще более тонкий слой, характерной чертой которого является постоянная температура, соответствующая среднегодовой температуре места наблюдений. Глубина этого слоя увеличивается в условиях континентального климата.

Еще глубже в земной коре выделяется геотермический слой, температура которого определяется внутренним теплом Земли и с глубиной возрастает.

Увеличение температуры происходит главным образом за счет распада радиоактивных элементов, входящих в состав горных пород, прежде всего радия и урана.

Величину нарастания температуры горных пород с глубиной называют геотермическим градиентом. Он колеблется в довольно широких пределах — от 0,1 до 0,01 °С/м — и зависит от состава горных пород, условий их залегания и ряда других факторов. Под океанами температура с глубиной нарастает быстрее, чем на континентах. В среднем с каждыми 100 м глубины становится теплее на 3 °С.

Величина, обратная геотермическому градиенту, называется геотермической ступенью. Она измеряется в м/°С.

Тепло земной коры — важный энергетический источник.

Часть земной коры, простирающаяся ло глубин, доступных для геологического изучения, образует недра Земли. Недра Земли требуют особой охраны и разумного использования.

В нашей стране, богатой углеводородами, геотермальная энергия - некий экзотический ресурс, который при сегодняшнем положении дел вряд ли составит конкуренцию нефти и газу. Тем не менее этот альтернативный вид энергии может использоваться практически всюду и довольно эффективно.

Геотермальная энергия - это тепло земных недр. Вырабатывается оно в глубинах и поступает к поверхности Земли в разных формах и с различной интенсивностью.

Температура верхних слоёв грунта зависит в основном от внешних (экзогенных) факторов - солнечного освещения и температуры воздуха. Летом и днём грунт до определённых глубин прогревается, а зимой и ночью охлаждается вслед за изменением температуры воздуха и с некоторым запаздыванием, нарастающим с глубиной. Влияние суточных колебаний температуры воздуха заканчивается на глубинах от единиц до нескольких десятков сантиметров. Сезонные колебания захватывают более глубокие пласты грунта - до десятков метров.

На некоторой глубине - от десятков до сотен метров - температура грунта держится постоянной, равной среднегодовой температуре воздуха у поверхности Земли. В этом легко убедиться, спустившись в достаточно глубокую пещеру.

Когда среднегодовая температура воздуха в данной местности ниже нуля, это проявляется как вечная (точнее, многолетняя) мерзлота. В Восточной Сибири мощность, то есть толщина, круглогодично мёрзлых грунтов достигает местами 200–300 м.

С некоторой глубины (своей для каждой точки на карте) действие Солнца и атмосферы ослабевает настолько, что на первое место выходят эндогенные (внутренние) факторы и происходит разогрев земных недр изнутри, так что температура с глубиной начинает расти.

Разогрев глубинных слоёв Земли связывают, главным образом, с распадом находящихся там радиоактивных элементов, хотя называют и другие источники тепла, например физико-химические, тектонические процессы в глубоких слоях земной коры и мантии. Но чем бы это ни было обусловлено, температура горных пород и связанных с ними жидких и газообразных субстанций с глубиной растёт. С этим явлением сталкиваются горняки - в глубоких шахтах всегда жарко. На глубине 1 км тридцатиградусная жара - нормальное явление, а глубже температура ещё выше.

Тепловой поток земных недр, достигающий поверхности Земли, невелик - в среднем его мощность составляет 0,03–0,05 Вт/м 2 , или примерно 350 Вт·ч/м 2 в год. На фоне теплового потока от Солнца и нагретого им воздуха это незаметная величина: Солнце даёт каждому квадратному метру земной поверхности около 4000 кВт·ч ежегодно, то есть в 10 000 раз больше (разумеется, это в среднем, при огромном разбросе между полярными и экваториальными широтами и в зависимости от других климатических и погодных факторов).

Незначительность теплового потока из недр к поверхности на большей части планеты связана с низкой теплопроводностью горных пород и особенностями геологического строения. Но есть исключения - места, где тепловой поток велик. Это, прежде всего, зоны тектонических разломов, повышенной сейсмической активности и вулканизма, где энергия земных недр находит выход. Для таких зон характерны термические аномалии литосферы, здесь тепловой поток, достигающий поверхности Земли, может быть в разы и даже на порядки мощнее «обычного». Огромное количество тепла на поверхность в этих зонах выносят извержения вулканов и горячие источники воды.

Именно такие районы наиболее благоприятны для развития геотермальной энергетики. На территории России это, прежде всего, Камчатка, Курильские острова и Кавказ.

В то же время развитие геотермальной энергетики возможно практически везде, поскольку рост температуры с глубиной - явление повсеместное, и задача заключается в «добыче» тепла из недр, подобно тому, как оттуда добывается минеральное сырьё.

В среднем температура с глубиной растёт на 2,5–3°C на каждые 100 м. Отношение разности температур между двумя точками, лежащими на разной глубине, к разности глубин между ними называют геотермическим градиентом.

Обратная величина - геотермическая ступень, или интервал глубин, на котором температура повышается на 1°C.

Чем выше градиент и соответственно ниже ступень, тем ближе тепло глубин Земли подходит к поверхности и тем более перспективен данный район для развития геотермальной энергетики.

В разных районах, в зависимости от геологического строения и других региональных и местных условий, скорость роста температуры с глубиной может резко различаться. В масштабах Земли колебания величин геотермических градиентов и ступеней достигают 25 крат. Например, в штате Орегон (США) градиент составляет 150°C на 1 км, а в Южной Африке - 6°C на 1 км.

Вопрос, какова температура на больших глубинах - 5, 10 км и более? При сохранении тенденции температура на глубине 10 км должна составлять в среднем примерно 250–300°C. Это более или менее подтверждается прямыми наблюдениями в сверхглубоких скважинах, хотя картина существенно сложнее линейного повышения температуры.

Например, в Кольской сверхглубокой скважине, пробурённой в Балтийском кристаллическом щите, температура до глубины 3 км меняется со скоростью 10°C/1 км, а далее геотермический градиент становится в 2–2,5 раза больше. На глубине 7 км зафиксирована уже температура 120°C, на 10 км - 180°C, а на 12 км - 220°C.

Другой пример - скважина, заложенная в Северном Прикаспии, где на глубине 500 м зарегистрирована температура 42°C, на 1,5 км - 70°C, на 2 км - 80°C, на 3 км - 108°C.

Предполагается, что геотермический градиент уменьшается начиная с глубины 20–30 км: на глубине 100 км предположительные температуры около 1300–1500°C, на глубине 400 км - 1600°C, в ядре Земли (глубины более 6000 км) - 4000–5000°C.

На глубинах до 10–12 км температуру измеряют через пробурённые скважины; там же, где их нет, её определяют по косвенным признакам так же, как и на бóльших глубинах. Такими косвенными признаками могут быть характер прохождения сейсмических волн или температура изливающейся лавы.

Впрочем, для целей геотермальной энергетики данные о температурах на глубинах более 10 км пока не представляют практического интереса.

На глубинах в несколько километров много тепла, но как его поднять? Иногда эту задачу решает за нас сама природа с помощью естественного теплоносителя - нагретых термальных вод, выходящих на поверхность или же залегающих на доступной для нас глубине. В ряде случаев вода в глубинах разогрета до состояния пара.

Строгого определения понятия «термальные воды» нет. Как правило, под ними подразумевают горячие подземные воды в жидком состоянии или в виде пара, в том числе выходящие на поверхность Земли с температурой выше 20°C, то есть, как правило, более высокой, чем температура воздуха.

Тепло подземных вод, пара, пароводяных смесей - это гидротермальная энергия. Соответственно энергетика, основанная на её использовании, называется гидротермальной.

Сложнее обстоит дело с добычей тепла непосредственно сухих горных пород - петротермальной энергии, тем более что достаточно высокие температуры, как правило, начинаются с глубин в несколько километров.

На территории России потенциал петротермальной энергии в сто раз выше, чем у гидротермальной, - соответственно 3500 и 35 трлн тонн условного топлива. Это вполне естественно - тепло глубин Земли имеется везде, а термальные воды обнаруживаются локально. Однако из-за очевидных технических трудностей для получения тепла и электроэнергии в настоящее время используются большей частью термальные воды.

Воды температурой от 20–30 до 100°C пригодны для отопления, температурой от 150°C и выше - и для выработки электроэнергии на геотермальных электростанциях.

В целом же геотермальные ресурсы на территории России в пересчёте на тонны условного топлива или любую другую единицу измерения энергии примерно в 10 раз выше запасов органического топлива.

Теоретически только за счёт геотермальной энергии можно было бы полностью удовлетворить энергетические потребности страны. Практически же на данный момент на большей части её территории это неосуществимо по технико-экономическим соображениям.

В мире использование геотермальной энергии ассоциируется чаще всего с Исландией - страной, расположенной на северном окончании Срединно-Атлантического хребта, в исключительно активной тектонической и вулканической зоне. Наверное, все помнят мощное извержение вулкана Эйяфьятлайокудль (Eyjafjallajökull ) в 2010 году.

Именно благодаря такой геологической специфике Исландия обладает огромными запасами геотермальной энергии, в том числе горячих источников, выходящих на поверхность Земли и даже фонтанирующих в виде гейзеров.

В Исландии в настоящее время более 60% всей потребляемой энергии берут из Земли. В том числе за счёт геотермальных источников обеспечивается 90% отопления и 30% выработки электроэнергии. Добавим, что остальная часть электроэнергии в стране производится на ГЭС, то есть также с использованием возобновляемого источника энергии, благодаря чему Исландия выглядит неким мировым экологическим эталоном.

«Приручение» геотермальной энергии в XX веке заметно помогло Исландии в экономическом отношении. До середины прошлого столетия она была очень бедной страной, сейчас занимает первое место в мире по установленной мощности и производству геотермальной энергии на душу населения и находится в первой десятке по абсолютной величине установленной мощности геотермальных электростанций. Однако её население составляет всего 300 тысяч человек, что упрощает задачу перехода на экологически чистые источники энергии: потребности в ней в целом невелики.

Помимо Исландии высокая доля геотермальной энергетики в общем балансе производства электроэнергии обеспечивается в Новой Зеландии и островных государствах Юго-Восточной Азии (Филиппины и Индонезия), странах Центральной Америки и Восточной Африки, территория которых также характеризуется высокой сейсмической и вулканической активностью. Для этих стран при их нынешнем уровне развития и потребностях геотермальная энергетика вносит весомый вклад в социально-экономическое развитие.

Использование геотермальной энергии имеет весьма давнюю историю. Один из первых известных примеров - Италия, местечко в провинции Тоскана, ныне называемое Лардерелло, где ещё в начале XIX века местные горячие термальные воды, изливавшиеся естественным путём или добываемые из неглубоких скважин, использовались в энергетических целях.

Вода из подземных источников, богатая бором, употреблялась здесь для получения борной кислоты. Первоначально эту кислоту получали методом выпаривания в железных бойлерах, а в качестве топлива брали обычные дрова из ближайших лесов, но в 1827 году Франческо Лардерел (Francesco Larderel) создал систему, работавшую на тепле самих вод. Одновременно энергию природного водяного пара начали использовать для работы буровых установок, а в начале XX века - и для отопления местных домов и теплиц. Там же, в Лардерелло, в 1904 году термальный водяной пар стал энергетическим источником для получения электричества.

Примеру Италии в конце XIX-начале XX века последовали некоторые другие страны. Например, в 1892 году термальные воды впервые были использованы для местного отопления в США (Бойсе, штат Айдахо), в 1919-м - в Японии, в 1928-м - в Исландии.

В США первая электростанция, работавшая на гидротермальной энергии, появилась в Калифорнии в начале 1930-х годов, в Новой Зеландии - в 1958 году, в Мексике - в 1959-м, в России (первая в мире бинарная ГеоЭС) - в 1965-м.

Старый принцип на новом источнике

Выработка электроэнергии требует более высокой температуры гидроисточника, чем для отопления, - более 150°C. Принцип работы геотермальной электростанции (ГеоЭС) сходен с принципом работы обычной тепловой электростанции (ТЭС). По сути, геотермальная электростанция - разновидность ТЭС.

На ТЭС в роли первичного источника энергии выступают, как правило, уголь, газ или мазут, а рабочим телом служит водяной пар. Топливо, сгорая, нагревает воду до состояния пара, который вращает паровую турбину, а она генерирует электричество.

Отличие ГеоЭС состоит в том, что первичный источник энергии здесь - тепло земных недр и рабочее тело в виде пара поступает на лопасти турбины электрогенератора в «готовом» виде прямо из добывающей скважины.

Существуют три основные схемы работы ГеоЭС: прямая, с использованием сухого (геотермального) пара; непрямая, на основе гидротермальной воды, и смешанная, или бинарная.

Применение той или иной схемы зависит от агрегатного состояния и температуры энергоносителя.

Самая простая и потому первая из освоенных схем - прямая, в которой пар, поступающий из скважины, пропускается непосредственно через турбину. На сухом пару работала и первая в мире ГеоЭС в Лардерелло в 1904 году.

ГеоЭС с непрямой схемой работы в наше время самые распространённые. Они используют горячую подземную воду, которая под высоким давлением нагнетается в испаритель, где часть её выпаривается, а полученный пар вращает турбину. В ряде случаев требуются дополнительные устройства и контуры для очистки геотермальной воды и пара от агрессивных соединений.

Отработанный пар поступает в скважину нагнетания либо используется для отопления помещений, - в этом случае принцип тот же, что при работе ТЭЦ.

На бинарных ГеоЭС горячая термальная вода взаимодействует с другой жидкостью, выполняющей функции рабочего тела с более низкой температурой кипения. Обе жидкости пропускаются через теплообменник, где термальная вода выпаривает рабочую жидкость, пары которой вращают турбину.

Эта система замкнута, что решает проблемы выбросов в атмосферу. Кроме того, рабочие жидкости со сравнительно низкой температурой кипения позволяют использовать в качестве первичного источника энергии и не очень горячие термальные воды.

Во всех трёх схемах эксплуатируется гидротермальный источник, но для получения электричества можно использовать и петротермальную энергию.

Принципиальная схема в этом случае также достаточно проста. Необходимо пробурить две соединяющиеся между собою скважины - нагнетательную и эксплуатационную. В нагнетательную скважину закачивается вода. На глубине она нагревается, затем нагретая вода или образовавшийся в результате сильного нагрева пар по эксплуатационной скважине подаётся на поверхность. Далее всё зависит от того, как используется петротермальная энергия - для отопления или для производства электроэнергии. Возможен замкнутый цикл с закачиванием отработанного пара и воды обратно в нагнетательную скважину либо другой способ утилизации.

Недостаток такой системы очевиден: для получения достаточно высокой температуры рабочей жидкости нужно бурить скважины на большую глубину. А это серьёзные затраты и риск существенных потерь тепла при движении флюида вверх. Поэтому петротермальные системы пока менее распространены по сравнению с гидротермальными, хотя потенциал петротермальной энергетики на порядки выше.

В настоящее время лидер в создании так называемых петротермальных циркуляционных систем (ПЦС) - Австралия. Кроме того, это направление геотермальной энергетики активно развивается в США, Швейцарии, Великобритании, Японии.

Подарок лорда Кельвина

Изобретение в 1852 году теплового насоса физиком Уильямом Томпсоном (он же - лорд Кельвин) предоставило человечеству реальную возможность использования низкопотенциального тепла верхних слоёв грунта. Теплонасосная система, или, как её называл Томпсон, умножитель тепла, основана на физическом процессе передачи тепла от окружающей среды к хладагенту. По сути, в ней используют тот же принцип, что и в петротермальных системах. Отличие - в источнике тепла, в связи с чем может возникнуть терминологический вопрос: насколько тепловой насос можно считать именно геотермальной системой? Дело в том, что в верхних слоях, до глубин в десятки-сотни метров, породы и содержащиеся в них флюиды нагреваются не глубинным теплом земли, а солнцем. Таким образом, именно солнце в данном случае - первичный источник тепла, хотя забирается оно, как и в геотермальных системах, из земли.

Работа теплового насоса основана на запаздывании прогрева и охлаждения грунта по сравнению с атмосферой, в результате чего образуется градиент температур между поверхностью и более глубокими слоями, которые сохраняют тепло даже зимой, подобно тому, как это происходит в водоёмах. Основное назначение тепловых насосов - обогрев помещений. По сути - это «холодильник наоборот». И тепловой насос, и холодильник взаимодействуют с тремя составляющими: внутренней средой (в первом случае - отапливаемое помещение, во втором - охлаждаемая камера холодильника), внешней средой - источником энергии и холодильным агентом (хладагентом), он же - теплоноситель, обеспечивающий передачу тепла или холода.

В роли хладагента выступает вещество с низкой температурой кипения, что позволяет ему отбирать тепло у источника, имеющего даже сравнительно низкую температуру.

В холодильнике жидкий хладагент через дроссель (регулятор давления) поступает в испаритель, где из-за резкого уменьшения давления происходит испарение жидкости. Испарение - эндотермический процесс, требующий поглощения тепла извне. В результате тепло из внутренних стенок испарителя забирается, что и обеспечивает охлаждающий эффект в камере холодильника. Далее из испарителя хладагент засасывается в компрессор, где он возвращается в жидкое агрегатное состояние. Это обратный процесс, ведущий к выбросу отнятого тепла во внешнюю среду. Как правило, оно выбрасывается в помещение, и задняя стенка холодильника сравнительно тёплая.

Тепловой насос работает практически так же, с той разницей, что тепло забирается из внешней среды и через испаритель поступает во внутреннюю среду - систему отопления помещения.

В реальном тепловом насосе вода нагревается, проходя по внешнему контуру, уложенному в землю или водоём, далее поступает в испаритель.

В испарителе тепло передаётся во внутренний контур, заполненный хладагентом с низкой температурой кипения, который, проходя через испаритель, переходит из жидкого состояния в газообразное, забирая тепло.

Далее газообразный хладагент попадает в компрессор, где сжимается до высокого давления и температуры, и поступает в конденсатор, где происходит теплообмен между горячим газом и теплоносителем из системы отопления.

Для работы компрессора требуется электроэнергия, тем не менее коэффициент трансформации (соотношение потребляемой и вырабатываемой энергии) в современных системах достаточно высок, чтобы обеспечить их эффективность.

В настоящее время тепловые насосы довольно широко используются для отопления помещений, главным образом, в экономически развитых странах.

Экокорректная энергетика

Геотермальная энергетика считается экологически чистой, что в целом справедливо. Прежде всего, в ней используется возобновляемый и практически неисчерпаемый ресурс. Геотермальная энергетика не требует больших площадей, в отличие от крупных ГЭС или ветропарков, и не загрязняет атмосферу, в отличие от углеводородной энергетики. В среднем ГеоЭС занимает 400 м 2 в пересчёте на 1 ГВт вырабатываемой электроэнергии. Тот же показатель для угольной ТЭС, к примеру, составляет 3600 м 2 . К экологическим преимуществам ГеоЭС относят также низкое водопотребление - 20 литров пресной воды на 1 кВт, тогда как для ТЭС и АЭС требуется около 1000 литров. Отметим, что это экологические показатели «среднестатистической» ГеоЭС.

Но отрицательные побочные эффекты всё же имеются. Среди них чаще всего выделяют шум, тепловое загрязнение атмосферы и химическое - воды и почвы, а также образование твёрдых отходов.

Главный источник химического загрязнения среды - собственно термальная вода (с высокой температурой и минерализацией), нередко содержащая большие количества токсичных соединений, в связи с чем существует проблема утилизации отработанной воды и опасных веществ.

Отрицательные эффекты геотермальной энергетики могут прослеживаться на нескольких этапах, начиная с бурения скважин. Здесь возникают те же опасности, что и при бурении любой скважины: разрушение почвенно-растительного покрова, загрязнение грунта и грунтовых вод.

На стадии эксплуатации ГеоЭС проблемы загрязнения окружающей среды сохраняются. Термальные флюиды - вода и пар - обычно содержат углекислый газ (CO 2), сульфид серы (H 2 S), аммиак (NH 3), метан (CH 4), поваренную соль (NaCl), бор (B), мышьяк (As), ртуть (Hg). При выбросах во внешнюю среду они становятся источниками её загрязнения. Кроме того, агрессивная химическая среда может вызывать коррозионные разрушения конструкций ГеоТЭС.

В то же время выбросы загрязняющих веществ на ГеоЭС в среднем ниже, чем на ТЭС. Например, выбросы углекислого газа на каждый киловатт-час выработанной электроэнергии составляют до 380 г на ГеоЭС, 1042 г - на угольных ТЭС, 906 г - на мазутных и 453 г - на газовых ТЭС.

Возникает вопрос: что делать с отработанной водой? При невысокой минерализации она после охлаждения может быть сброшена в поверхностные воды. Другой путь - закачивание её обратно в водоносный пласт через нагнетательную скважину, что предпочтительно и преимущественно применяется в настоящее время.

Добыча термальной воды из водоносных пластов (как и выкачивание обычной воды) может вызывать просадку и подвижки грунта, другие деформации геологических слоёв, микроземлетрясения. Вероятность таких явлений, как правило, невелика, хотя отдельные случаи зафиксированы (например, на ГеоЭС в Штауфен-им-Брайсгау в Германии).

Следует подчеркнуть, что большая часть ГеоЭС расположена на сравнительно малонаселённых территориях и в странах третьего мира, где экологические требования бывают менее жёсткими, чем в развитых странах. Кроме того, на данный момент количество ГеоЭС и их мощности сравнительно невелики. При более масштабном развитии геотермальной энергетики экологические риски могут возрасти и умножиться.

Почём энергия Земли?

Инвестиционные затраты на строительство геотермальных систем варьируют в очень широком диапазоне - от 200 до 5000 долларов на 1 кВт установленной мощности, то есть самые дешёвые варианты сопоставимы со стоимостью строительства ТЭС. Зависят они, прежде всего, от условий залегания термальных вод, их состава, конструкции системы. Бурение на большую глубину, создание замкнутой системы с двумя скважинами, необходимость очистки воды могут многократно увеличивать стоимость.

Например, инвестиции в создание петротермальной циркуляционной системы (ПЦС) оцениваются в 1,6–4 тыс. долларов на 1 кВт установленной мощности, что превышает затраты на строительство атомной электростанции и сопоставимо с затратами на строительство ветряных и солнечных электростанций.

Очевидное экономическое преимущество ГеоТЭС - бесплатный энергоноситель. Для сравнения - в структуре затрат работающей ТЭС или АЭС на топливо приходится 50–80% или даже больше, в зависимости от текущих цен на энергоносители. Отсюда ещё одно преимущество геотермальной системы: расходы при эксплуатации более стабильны и предсказуемы, поскольку не зависят от внешней конъюнктуры цен на энергоносители. В целом эксплуатационные затраты ГеоТЭС оцениваются в 2–10 центов (60 коп.–3 руб.) на 1 кВт·ч произведённой мощности.

Вторая по величине после энергоносителя (и весьма существенная) статья расходов - это, как правило, заработная плата персонала станции, которая может кардинально различаться по странам и регионам.

В среднем себестоимость 1 кВт·ч геотермальной энергии сопоставима с таковой для ТЭС (в российских условиях - около 1 руб./1 кВт·ч) и в десять раз выше себестоимости выработки электроэнергии на ГЭС (5–10 коп./1 кВт·ч).

Отчасти причина высокой себестоимости заключается в том, что, в отличие от тепловых и гидравлических электростанций, ГеоТЭС имеет сравнительно небольшую мощность. Кроме того, необходимо сравнивать системы, находящиеся в одном регионе и в сходных условиях. Так, например, на Камчатке, по оценкам экспертов, 1 кВт·ч геотермальной электроэнергии обходится в 2–3 раза дешевле электроэнергии, произведённой на местных ТЭС.

Показатели экономической эффективности работы геотермальной системы зависят, например, и от того, нужно ли утилизировать отработанную воду и какими способами это делается, возможно ли комбинированное использование ресурса. Так, химические элементы и соединения, извлечённые из термальной воды, могут дать дополнительный доход. Вспомним пример Лардерелло: первичным там было именно химическое производство, а использование геотермальной энергии первоначально носило вспомогательный характер.

Форварды геотермальной энергетики

Геотермальная энергетика развивается несколько иначе, чем ветряная и солнечная. В настоящее время она в существенно большей степени зависит от характера самого ресурса, который резко различается по регионам, а наибольшие концентрации привязаны к узким зонам геотермических аномалий, связанных, как правило, с районами развития тектонических разломов и вулканизма.

Кроме того, геотермальная энергетика менее технологически ёмкая по сравнению с ветряной и тем более с солнечной энергетикой: системы геотермальных станций достаточно просты.

В общей структуре мирового производства электроэнергии на геотермальную составляющую приходится менее 1%, но в некоторых регионах и странах её доля достигает 25–30%. Из-за привязки к геологическим условиям значительная часть мощностей геотермальной энергетики сосредоточена в странах третьего мира, где выделяются три кластера наибольшего развития отрасли - острова Юго-Восточной Азии, Центральная Америка и Восточная Африка. Два первых региона входят в Тихоокеанский «огненный пояс Земли», третий привязан к Восточно-Африканскому рифту. С наибольшей вероятностью геотермальная энергетика и далее будет развиваться в этих поясах. Более отдалённая перспектива - развитие петротермальной энергетики, использующей тепло слоёв земли, лежащих на глубине нескольких километров. Это практически повсеместно распространённый ресурс, но его извлечение требует высоких затрат, поэтому петротермальная энергетика развивается прежде всего в наиболее экономически и технологически мощных странах.

В целом, учитывая повсеместное распространение геотермальных ресурсов и приемлемый уровень экологической безопасности, есть основания предполагать, что геотермальная энергетика имеет хорошие перспективы развития. Особенно при нарастании угрозы дефицита традиционных энергоносителей и росте цен на них.

От Камчатки до Кавказа

В России развитие геотермальной энергетики имеет достаточно давнюю историю, и по ряду позиций мы находимся в числе мировых лидеров, хотя в общем энергобалансе огромной страны доля геотермальной энергии пока ничтожно мала.

Пионерами и центрами развития геотермальной энергетики в России стали два региона - Камчатка и Северный Кавказ, причём если в первом случае речь идёт прежде всего об электроэнергетике, то во втором - об использовании тепловой энергии термальной воды.

На Северном Кавказе - в Краснодарском крае, Чечне, Дагестане - тепло термальных вод для энергетических целей использовалось ещё до Великой Отечественной войны. В 1980–1990-е годы развитие геотермальной энергетики в регионе по понятным причинам застопорилось и пока из состояния стагнации не вышло. Тем не менее геотермальное водоснабжение на Северном Кавказе обеспечивает теплом около 500 тыс. человек, а, например, город Лабинск в Краснодарском крае с населением 60 тыс. человек полностью отапливается за счёт геотермальных вод.

На Камчатке история геотермальной энергетики связана, прежде всего, со строительством ГеоЭС. Первые из них, до сих пор работающие Паужетская и Паратунская станции, были построены ещё в 1965–1967 годах, при этом Паратунская ГеоЭС мощностью 600 кВт стала первой станцией в мире с бинарным циклом. Это была разработка советских учёных С. С. Кутателадзе и А. М. Розенфельда из Института теплофизики СО РАН, получивших в 1965 году авторское свидетельство на извлечение электроэнергии из воды с температурой от 70°C. Эта технология впоследствии стала прототипом для более 400 бинарных ГеоЭС в мире.

Мощность Паужетской ГеоЭС, введённой в эксплуатацию в 1966 году, изначально составляла 5 МВт и впоследствии была наращена до 12 МВт. В настоящее время на станции идёт строительство бинарного блока, который увеличит её мощность ещё на 2,5 МВт.

Развитие геотермальной энергетики в СССР и России тормозилось доступностью традиционных энергоносителей - нефти, газа, угля, но никогда не прекращалось. Крупнейшие на данный момент объекты геотермальной энергетики - Верхне-Мутновская ГеоЭС с суммарной мощностью энергоблоков 12 МВт, введённая в эксплуатацию в 1999 году, и Мутновская ГеоЭС мощностью 50 МВт (2002 год).

Мутновская и Верхне-Мутновская ГеоЭС - уникальные объекты не только для России, но и в мировом масштабе. Станции расположены у подножия вулкана Мутновский, на высоте 800 метров над уровнем моря, и работают в экстремальных климатических условиях, где 9–10 месяцев в году зима. Оборудование Мутновских ГеоЭС, на данный момент одно из самых современных в мире, полностью создано на отечественных предприятиях энергетического машиностроения.

В настоящее время доля Мутновских станций в общей структуре энергопотребления Центрально-Камчатского энергетического узла составляет 40%. В ближайшие годы планируется увеличение мощности.

Отдельно следует сказать о российских петротермальных разработках. Крупных ПЦС у нас пока нет, однако есть передовые технологии бурения на большую глубину (порядка 10 км), которые также не имеют аналогов в мире. Их дальнейшее развитие позволит кардинально снизить затраты на создание петротермальных систем. Разработчики данных технологий и проектов - Н. А. Гнатусь, М. Д. Хуторской (Геологический институт РАН), А. С. Некрасов (Институт народнохозяйственного прогнозирования РАН) и специалисты Калужского турбинного завода. Сейчас проект петротермальной циркуляционной системы в России находится на экспериментальной стадии.

Перспективы у геотермальной энергетики в России есть, хотя и сравнительно отдалённые: на данный момент достаточно велик потенциал и сильны позиции традиционной энергетики. В то же время в ряде отдалённых районов страны использование геотермальной энергии экономически выгодно и востребовано уже сейчас. Это территории с высоким геоэнергетическим потенциалом (Чукотка, Камчатка, Курилы - российская часть Тихоокеанского «огненного пояса Земли», горы Южной Сибири и Кавказ) и одновременно удалённые и отрезанные от централизованного энергоснабжения.

Вероятно, в ближайшие десятилетия геотермальная энергетика в нашей стране будет развиваться именно в таких регионах.