Графический метод решения уравнений с параметрами. «Графические методы решения уравнений и неравенств с параметрами


1. Определение личностной мотивации учащихся. Для продолжения образования, для саморазвития и интеллектуального роста необходимо прилежно и осознанно учиться и заботиться о своем здоровье. 2. Выход на понятие «параметр». Параметр – величина, характеризующая основные свойства изменения системы или явления. (толковый словарь)


В уравнениях (неравенствах) коэффициенты при неизвестных или свободные члены заданные не конкретными числовыми значениями, а обозначенные буквами называются параметрами. Пример: Решить задачу с параметром – это значит, для каждого значения параметра найти значения x, удовлетворяющие условию этой задачи.


Х у х у a > 0 a 0, (2 корня) 0 a 0, (2 корня)"> 0 a 0, (2 корня)"> 0 a 0, (2 корня)" title="х у х у a > 0 a 0, (2 корня)"> title="х у х у a > 0 a 0, (2 корня)">






Х ууууу хох




2. при уравнение примет вид, и имеет корень х =0. 3. при находим корни уравнения по формуле Ответ: при корней нет; при один корень х =0. при два корня 1. левая часть уравнения неотрицательна при любом значении неизвестной х,. при решений нет. х у 0 у = а «СМОТРИ!» 1 способ (аналитический) 2 способ (графический)




У При каких значениях параметра а уравнение имеет одно решение? Запишем уравнение в виде: х Построим графики функций: Ответ: а =3 и подвижную прямую у = а. а


При каких значениях параметра а уравнение не имеет решений? х у Построим график По рисунку видим при и прямую у = а. решений нет. а Ответ:


(Графический способ решения задач с параметром) Задачу с параметром можно рассматривать как функцию f (x; a) =0 1. Строим графический образ 2. Пересекаем полученный график прямыми параллельными оси абсцисс 3. «Считываем» нужную информацию Схема решения: !!!


3 Ответ: 1 корень " title="Указать количество корней уравнения f(x)= а при всех значениях параметра а. 1 35-2 1 х а -5 3 1 корень, а3 Ответ: 1 корень " class="link_thumb"> 15 Указать количество корней уравнения f(x)= а при всех значениях параметра а х а корень, а3 Ответ: 1 корень при a 3 2 корня при а=-5, а=3 3 корня при 1 3 Ответ: 1 корень "> 3 Ответ: 1 корень при a 3 2 корня при а=-5, а=3 3 корня при 1 3 Ответ: 1 корень " title="Указать количество корней уравнения f(x)= а при всех значениях параметра а. 1 35-2 1 х а -5 3 1 корень, а3 Ответ: 1 корень "> title="Указать количество корней уравнения f(x)= а при всех значениях параметра а. 1 35-2 1 х а -5 3 1 корень, а3 Ответ: 1 корень ">


Х у у При каких значениях параметра а уравнение имеет два корня? х у х


1)При а = 3, вершина прямого угла; Найти сумму целых значений параметра а при которых уравнение имеет три корня. Исходное уравнение равносильно совокупности В ыражая параметр а, получаем: Из рисунка видно, что уравнение имеет три корня в 3 случаях х а а 1 = 3 а 2 = ? а 3 = ? Тогда а = = 5. Ответ. 8. 2) При x 4, а 2 = 5 а 3 а 3 4, а 2 = 5 а 3 а 3">



Уравнения с параметрами по праву считаются одними из самых сложных задач в курсе школьной математики. Именно такие задачи и попадают из года в год в список заданий типа B и C на едином государственном экзамене ЕГЭ. Однако среди большого числа уравнений с параметрами есть те, которые с легкостью могут быть решены графическим способом. Рассмотрим этот метод на примере решения нескольких задач.

Найти сумму целых значений числа a, при которых уравнение |x 2 – 2x – 3| = a имеет четыре корня.

Решение.

Чтобы ответить на вопрос задачи, построим на одной координатной плоскости графики функций

y = |x 2 – 2x – 3| и y = a.

График первой функции y = |x 2 – 2x – 3| будет получен из графика параболы y = x 2 – 2x – 3 путем симметричного отображения относительно оси абсцисс той части графика, которая находится ниже оси Ox. Часть графика, находящаяся выше оси абсцисс, останется без изменений.

Проделаем это поэтапно. Графиком функции y = x 2 – 2x – 3 является парабола, ветви которой направлены вверх. Чтобы построить ее график, найдем координаты вершины. Это можно сделать по формуле x 0 = -b/2a. Таким образом, x 0 = 2/2 = 1. Чтобы найти координату вершины параболы по оси ординат, подставим полученное значение для x 0 в уравнение рассматриваемой функции. Получим, что y 0 = 1 – 2 – 3 = -4. Значит, вершина параболы имеет координаты (1; -4).

Далее нужно найти точки пересечения ветвей параболы с осями координат. В точках пересечения ветвей параболы с осью абсцисс значение функции равно нулю. Поэтому решим квадратное уравнение x 2 – 2x – 3 = 0. Его корни и будут искомыми точками. По теореме Виета имеем x 1 = -1, x 2 = 3.

В точках пересечения ветвей параболы с осью ординат значение аргумента равно нулю. Таким образом, точка y = -3 есть точка пересечения ветвей параболы с осью y. Полученный график изображен на рисунке 1.

Чтобы получить график функции y = |x 2 – 2x – 3|, отобразим симметрично относительно оси x часть графика, находящуюся ниже оси абсцисс. Полученный график изображен на рисунке 2.

График функции y = a – это прямая, параллельная оси абсцисс. Он изображен на рисунке 3. С помощью рисунка и находим, что графики имеют четыре общие точки (а уравнение – четыре корня), если a принадлежит интервалу (0; 4).

Целые значения числа a из полученного интервала: 1; 2; 3. Чтобы ответить на вопрос задачи, найдем сумму этих чисел: 1 + 2 + 3 = 6.

Ответ: 6.

Найти среднее арифметическое целых значений числа a, при которых уравнение |x 2 – 4|x| – 1| = a имеет шесть корней.

Начнем с построения графика функции y = |x 2 – 4|x| – 1|. Для этого воспользуемся равенством a 2 = |a| 2 и выделим полный квадрат в подмодульном выражении, написанном в правой части функции:

x 2 – 4|x| – 1 = |x| 2 – 4|x| - 1 = (|x| 2 – 4|x| + 4) – 1 – 4 = (|x |– 2) 2 – 5.

Тогда исходная функция будет иметь вид y = |(|x| – 2) 2 – 5|.

Для построения графика этой функции строим последовательно графики функций:

1) y = (x – 2) 2 – 5 – парабола с вершиной в точке с координатами (2; -5); (Рис. 1).

2) y = (|x| – 2) 2 – 5 – часть построенной в пункте 1 параболы, которая находится справа от оси ординат, симметрично отображается слева от оси Oy; (Рис. 2).

3) y = |(|x| – 2) 2 – 5| – часть построенного в пункте 2 графика, которая находится ниже оси x, отображается симметрично относительно оси абсцисс наверх. (Рис. 3).

Рассмотрим получившиеся рисунки:

Графиком функции y = a является прямая, параллельная оси абсцисс.

С помощью рисунка делаем вывод, что графики функций имеют шесть общих точек (уравнение имеет шесть корней), если a принадлежит интервалу (1; 5).

Это можно видеть на следующем рисунке:

Найдем среднее арифметическое целых значений параметра a:

(2 + 3 + 4)/3 = 3.

Ответ: 3.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Отделкина Ольга ученица 9 класса

Эта тема является неотъемлемой частью изучения школьного курса алгебры. Цель данной работы более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. Этот реферат поможет понять другим ученикам применение графического метода решения уравнений с параметрами, узнать о происхождении, развитии этого метода.

Скачать:

Предварительный просмотр:

Введение2

Глава 1. Уравнения с параметром

История возникновения уравнений с параметром3

Теорема Виета4

Основные понятия5

Глава 2. Виды уравнений с параметрами.

Линейные уравнения6

Квадратные уравнения…………………………………………....................7

Глава 3. Методы решения уравнений с параметром

Аналитический метод….……………………………………………….......8

Графический метод. История возникновения….…………………………9

Алгоритм решения графическим методом..…………….....…………….10

Решение уравнения с модулем……………...…………………………….11

Практическая часть……………………...………………………………………12

Заключение……………………………………………………………………….19

Список литературы………………………………………………………………20

Введение.

Я выбрала эту тему, так как она является неотъемлемой частью изучения школьного курса алгебры. Готовя данную работу, я ставила цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. Мой реферат поможет понять другим ученикам применение графического метода решения уравнений с параметрами, узнать о происхождении, развитии этого метода.

В современной жизни изучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами.

Для решения таких уравнений графический метод является весьма эффективным, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра α.

Задачи с параметрами представляют чисто математический интерес, способствуют интеллектуальному развитию учащихся, служат хорошим материалом для отработки навыков. Они обладают диагностической ценностью, так как с помощью них можно проверить знание основных разделов математики, уровень математического и логического мышления, первоначальные навыки исследовательской деятельности и перспективные возможности успешного овладения курса математики в высших учебных заведениях.

В моём реферате рассмотрены часто встречающиеся типы уравнений, и, я надеюсь, что знания, полученные мной в процессе работы, помогут мне при сдаче школьных экзаменов, ведь уравнения с параметрами по праву считаются одними из самых сложных задач в курсе школьной математики. Именно такие задачи и попадают в список заданий на едином государственном экзамене ЕГЭ.

История возникновения уравнений с параметром

Задачи на уравнения с параметром встречались уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. Индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

αх 2 + bx = c, α>0

В уравнении коэффициенты, кроме параметра , могут быть и отрицательными.

Квадратные уравнения у ал-Хорезми.

В алгебраическом трактате ал-Хорезми дается классификация линейных и квадратных уравнений с параметром а. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корням», т. е. αx 2 = bx.

2) «Квадраты равны числу», т. е. αx 2 = c.

3) «Корни равны числу», т. е. αx = c.

4) «Квадраты и числа равны корням», т. е. αx 2 + c = bx.

5) «Квадраты и корни равны числу», т. е. αx 2 + bx = c.

6) «Корни и числа равны квадратам», т. е. bx + c = αx 2 .

Формулы решения квадратных уравнений по ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. Итальянским математиком Леонардо Фибоначчи.

Вывод формулы решения квадратного уравнения с параметром в общем виде имеется у Виета, однако Виета признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в ХII в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принял современный вид.

Теорема Виета

Теорема, выражающая связь между параметрами, коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. Следующим образом: «Если b + d, умноженное на α минус α 2 , равно bc, то α равно b и равно d».

Чтобы понять Виета, следует вспомнить, что α, как и всякая гласная буква, означала у него неизвестное (наше х), гласные же b, d - коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает:

Если имеет место

(α + b)x - x 2 = αb,

Т. е. x 2 - (α -b)x + αb =0,

то x 1 = α, x 2 = b.

Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виета установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и поэтому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

Основные понятия

Параметр - независимая переменная, значение которой считается фиксированным или произвольным числом, или числом, принадлежащим заданному условием задачи промежутку.

Уравнение с параметром — математическое уравнение , внешний вид и решение которого зависит от значений одного или нескольких параметров.

Решить уравнение с параметром означает для каждого значения найти значения х, удовлетворяющие этому уравнению, а также:

  1. 1. Исследовать, при каких значениях параметров уравнение имеет корни и сколько их при разных значениях параметров.
  2. 2. Найти все выражения для корней и указать для каждого из них те значения параметров, при которых это выражение действительно определяет корень уравнения.

Рассмотрим уравнение α(х+k)= α +c, где α, c, k, x -переменные величины.

Системой допустимых значений переменных α, c, k, x называется любая система значений переменных, при которой и левая и правая части этого уравнения принимают действительные значения.

Пусть А - множество всех допустимых значений α, K- множество всех допустимых значений k, Х - множество всех допустимых значений х, C- множество всех допустимых значений c. Если у каждого из множеств A, K, C, X выбрать и зафиксировать соответственно по одному значению α, k, c, и подставить их в уравнение, то получим уравнение относительно x, т.е. уравнение с одним неизвестным.

Переменные α, k, c, которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры.

Параметры обозначаются первыми буквами латинского алфавита: α, b, c, d, …, k , l, m, n, а неизвестные - буквами x, y,z.

Два уравнения, содержащие одни и те же параметры, называются равносильными , если:

а) они имеют смысл при одних и тех же значениях параметров;

б) каждое решение первого уравнения является решением второго и наоборот.

Виды уравнений с параметрами

Уравнения с параметрами бывают: линейные и квадратные.

1)Линейное уравнение. Общий вид:

α х = b, где х - неизвестное; α , b - параметры.

Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра α является значение α = 0.

1.Если, а ≠0 , то при любой паре параметров α и b оно имеет единственное решение х = .

2.Если, а =0,то уравнение принимает вид:0 х = b . В этом случае значение b = 0 является особым значением параметра b .

2.1. При b ≠ 0 уравнение решений не имеет.

2.2. При b =0 уравнение примет вид:0 х =0.

Решением данного уравнения является любое действительное число.

Квадратное уравнение с параметром.

Общий вид:

α x 2 + bx + c = 0

где параметр α ≠0, b и с — произвольные числа

Если α =1, то уравнение называется приведённым квадратным уравнением.

Корни квадратного уравнения находятся по формулам

Выражение D = b 2 - 4 α c называют дискриминантом.

1. Если D> 0 — уравнение имеет два различных корня.

2. Если D < 0 — уравнение не имеет корней.

3. Если D = 0 — уравнение имеет два равных корня.

Методы решения уравнений с параметром:

  1. Аналитический - способ прямого решения, повторяющего стандартные процедуры нахождения ответа в уравнении без параметров.
  2. Графический - в зависимости от условия задачи рассматривается положение графика соответствующей квадратичной функции в системе координат.

Аналитический метод

Алгоритм решения:

  1. Прежде, чем приступить к решению задачи с параметрами аналитическим методом, нужно разобраться в ситуации для конкретного числового значения параметра. Например, возьмите значение параметра α =1 и ответьте на вопрос: является ли значение параметра α =1 искомым для данной задачи.

Пример 1. Решить относительно Х линейное уравнение с параметром m :

По смыслу задачи (m-1)(x+3) = 0, то есть m = 1, x = -3.

Умножив обе части уравнения на (m-1)(x+3), получим уравнение

Получаем

Отсюда при m= 2,25 .

Теперь необходимо проверить, нет ли таких значений m, при которых

найденное значение x равно -3.

решая это уравнение, получаем, что х равен -3 при m = -0,4.

Ответ: при m=1, m =2,25.

Графический метод. История возникновения

Исследование общих зависимостей началось в 14 веке. Средневековая наука была схоластической. При таком характере не оставалось места изучению количественных зависимостей, речь шла лишь о качествах предметов и их связях друг с другом. Но среди схоластов возникла школа, утверждавшая, что качества могут быть более или менее интенсивными (платье человека, свалившегося в реку, мокрее, чем у того, кто лишь попал под дождь)

Французский ученый Николай Оресм стал изображать интенсивность длинами отрезков. Когда он располагал эти отрезки перпендикулярно некоторой прямой, их концы образовывали линию, названную им "линией интенсивностей" или "линией верхнего края» (график соответствующей функциональной зависимости). Оресм изучал даже "плоскостные" и "телесные" качества, т.е. функции, зависящие от двух или трех переменных.

Важным достижением Оресма была попытка классифицировать получившиеся графики. Он выделил три типа качеств: Равномерные (с постоянной интенсивностью), равномерно-неравномерные (с постоянной скоростью изменения интенсивности) и неравномерно-неравномерные (все остальные), а также характерные свойства графиков таких качеств.

Чтобы создать математический аппарат для изучения графиков функций, понадобилось понятие переменной величины. Это понятие было введено в науку французским философом и математиком Рене Декартом (1596-1650). Именно Декарт пришел к идеям о единстве алгебры и геометрии и о роли переменных величин, Декарт ввел фиксированный единичный отрезок и стал рассматривать отношения других отрезков к нему.

Таким образом, графики функций за все время своего существования прошли через ряд фундаментальных преобразований, приведших их к тому виду, к которому мы привыкли. Каждый этап или ступень развития графиков функций - неотъемлемая часть истории современной алгебры и геометрии.

Графический способ определения числа корней уравнения в зависимости от входящего в него параметра является более удобным, чем аналитический.

Алгоритм решения графическим методом

График функции — множество точек, у которых абсциссы являются допустимыми значениями аргумента , а ординаты — соответствующими значениями функции .

Алгоритм графического решения уравнений с параметром:

  1. Находим область определения уравнения.
  2. Выражаем α как функцию от х.
  3. В системе координат строим график функции α (х) для тех значений х, которые входят в область определения данного уравнения.
  4. Находим точки пересечения прямой α =с, с графиком функции

α (х). Если прямая α =с пересекает график α (х), то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение c = α (х) относительно х.

  1. Записываем ответ

Решение уравнений с модулем

При решении уравнений с модулем, содержащих параметр, графическим способом, необходимо построить графики функций и при различных значениях параметра рассмотреть все возможные случаи.

Например, │х│= а,

Ответ: если а < 0, то нет корней, а > 0, то х = а , х = - а, если а = 0, то х =0.

Решение задач.

Задача 1. Сколько корней имеет уравнение | | x | - 2 | = a в зависимости от параметра a ?

Решение. В системе координат (x; y) построим графики функций y = | | x | - 2 | и y = a . График функции y = | | x | - 2 | изображен на рисунке.

Графиком функции y = α a = 0).

Из графика видно, что:

Если a = 0, то прямая y = a совпадает с осью Ox и имеет с графиком функции y = | | x | - 2 | две общие точки; значит, исходное уравнение имеет два корня (в данном случае корни можно найти: x 1,2 = + 2).
Если 0 < a < 2, то прямая y = α имеет с графиком функции y = | | x | - 2 | четыре общие точки и, следовательно, исходное уравнение имеет четыре корня.
Если
a = 2, то прямая y = 2 имеет с графиком функции три общие точки. Тогда исходное уравнение имеет три корня.
Если
a > 2, то прямая y = a будет иметь с графиком исходной функции две точки, то есть данное уравнение будет иметь два корня.

Ответ: если a < 0, то корней нет;
если a = 0, a > 2, то два корня;
если a = 2, то три корня;
если 0 < a < 2, то четыре корня.

Задача 2. Сколько корней имеет уравнение | x 2 - 2| x | - 3 | = a в зависимости от параметра a ?

Решение. В системе координат (x; y) построим графики функций y = | x 2 - 2| x | - 3 | и y = a .

График функции y = | x 2 - 2| x | - 3 | изображен на рисунке. Графиком функции y = α является прямая, параллельная Ox или с ней совпадающая (когда a = 0).

Из графика видно:

Если a = 0, то прямая y = a совпадает с осью Ox и имеет с графиком функции y = | x2 - 2| x | - 3 | две общие точки, а также прямая y = a будет иметь с графиком функции y = | x 2 - 2| x | - 3 | две общие точки при a > 4. Значит, при a = 0 и a > 4 исходное уравнение имеет два корня.
Если 0 <
a < 3, то прямая y = a имеет с графиком функции y = | x 2 - 2| x | - 3 | четыре общие точки, а также прямая y= a будет иметь с графиком построенной функции четыре общие точки при a = 4. Значит, при 0 < a < 3, a = 4 исходное уравнение имеет четыре корня.
Если
a = 3, то прямая y = a пересекает график функции в пяти точках; следовательно, уравнение имеет пять корней.
Если 3 <
a < 4, прямая y = α пересекает график построенной функции в шести точках; значит, при этих значениях параметра исходное уравнение имеет шесть корней.
Если
a < 0, уравнение корней не имеет, так как прямая y = α не пересекает график функции y = | x 2 - 2| x | - 3 |.

Ответ: если a < 0, то корней нет;
если a = 0, a > 4, то два корня;
если 0 < a < 3, a = 4, то четыре корня;

если a = 3, то пять корней;
если 3 < a < 4, то шесть корней.

Задача 3. Сколько корней имеет уравнение

в зависимости от параметра a ?

Решение. Построим в системе координат (x; y) график функции

но сначала представим ее в виде:

Прямые x = 1, y = 1 являются асимптотами графика функции. График функции y = | x | + a получается из графика функции y = | x | смещением на a единиц по оси Oy.

Графики функций пересекаются в одной точке при a > - 1; значит, уравнение (1) при этих значениях параметра имеет одно решение.

При a = - 1, a = - 2 графики пересекаются в двух точках; значит, при этих значениях параметра уравнение (1) имеет два корня.
При - 2 <
a < - 1, a < - 2 графики пересекаются в трех точках; значит, уравнение (1) при этих значениях параметра имеет три решения.

Ответ: если a > - 1, то одно решение;
если a = - 1, a = - 2, то два решения;
если - 2 < a < - 1, a < - 1, то три решения.

Замечание. При решении уравнения задачи особо следует обратить внимание на случай, когда a = - 2, так как точка (- 1; - 1) не принадлежит графику функции но принадлежит графику функции y = | x | + a .

Задача 4. Сколько корней имеет уравнение

x + 2 = a | x - 1 |

в зависимости от параметра a ?

Решение. Заметим, что x = 1 не является корнем данного уравнения, так как равенство 3 = a 0 не может быть верным ни при каком значении параметра a . Разделим обе части уравнения на | x - 1 |(| x - 1 | 0), тогда уравнение примет вид В системе координат xOy построим график функции

График этой функции изображен на рисунке. Графиком функции y = a является прямая, параллельная оси Ox или с ней совпадающая (при a = 0).