Какие виды работы связанные с ионизирующим излучением. Медицинские нормы и противопоказания при работе с ионизирующим излучением. Ионизирующее излучение, это излучение, которое создается при радио-активном распаде, ядерных превращениях, торможении заряжен

Атомная энергия достаточно активно используется с мирными целями, например, в работе рентгеновского аппарата, ускорительной установки, что позволило распространять ионизирующие излучения в народном хозяйстве. Учитывая то, что человек ежедневно подвергается его воздействию, необходимо узнать, какими могу быт последствия опасного контакта и как обезопасить себя.

Основная характеристика

Ионизирующее излучение – это разновидность энергии лучистой, попадающей в конкретную среду, вызывая процесс ионизации в организме. Подобная характеристика ионизирующих излучений подходит для рентгеновских лучей, радиоактивных и высоких энергий, а также многое другое.

Ионизирующее излучение оказывает непосредственное влияние на организм человека. Несмотря на то что ионизирующее излучение может применяться в медицине, оно чрезвычайно опасно, о чем свидетельствует его характеристика и свойства.

Известными разновидностями являются облучения радиоактивные, которые появляются по причине произвольного расщепления атомного ядра, что вызывает трансформацию химических, физических свойств. Вещества, которые могут распадаться, считаются радиоактивными.

Они бывают искусственными (семьсот элементов), естественными (пятьдесят элементов) – торий, уран, радий. Следует отметить, что у них имеются канцерогенные свойства, выделяются токсины в результате воздействия на человека могут стать причиной рака, лучевой болезни.

Необходимо отметить следующие виды ионизирующих излучений, которые оказывают воздействие на организм человека:

Альфа

Считаются положительно заряженными ионами гелия, которые появляются в случае распада ядер тяжелых элементов. Защита от ионизирующих излучений осуществляется с помощью бумажного листка, ткани.

Бета

– поток отрицательно заряженных электронов, которые появляются в случае распада радиоактивных элементов: искусственных, естественных. Поражающий фактор намного выше, чем у предыдущего вида. В качестве защиты понадобится толстый экран, более прочный. К таким излучениям относятся позитроны.

Гамма

– жесткое электромагнитное колебание, появляющееся впоследствии распада ядер радиоактивных веществ. Наблюдается высокий проникающий фактор, является самым опасным излучением из трех перечисленных для организма человека. Чтобы экранировать лучи, нужно воспользоваться специальными устройствами. Для этого понадобятся хорошие и прочные материалы: вода, свинец и бетон.

Рентгеновское

Ионизирующее излучение формируется в процессе работы с трубкой, сложными установками. Характеристика напоминает гамма лучи. Отличие заключается в происхождении, длине волны. Присутствует проникающий фактор.

Нейтронное

Излучение нейтронное – это поток незаряженных нейтронов, которые входя в состав ядер, кроме водорода. В результате облучения, вещества получают порцию радиоактивности. Имеется самый большой проникающий фактор. Все эти виды ионизирующих излучений очень опасны.

Главные источники излучения

Источники ионизирующего излучения бывают искусственными, естественными. В основном организм человека получает радиацию от естественных источников, к ним относятся:

  • земная радиация;
  • облучение внутреннее.

Что касается источников земной радиации, многие из них канцерогенные. К ним относят:

  • уран;
  • калий;
  • торий;
  • полоний;
  • свинец;
  • рубидий;
  • радон.

Опасность состоит в том, что они канцерогенные. Радон – газ, у которого отсутствует запах, цвет, вкус. Он тяжелее воздуха в семь с половиной раз. Продукты его распада намного опаснее, чем газ, поэтому воздействие на организм человека крайне трагично.

К искусственным источникам относятся:

  • энергетика ядерная;
  • фабрики обогатительные;
  • рудники урановые;
  • могильники с отходами радиоактивными;
  • рентгеновские аппараты;
  • взрыв ядерный;
  • научные лаборатории;
  • радионуклиды, которые активно используют в современной медицине;
  • осветительные устройства;
  • компьютеры и телефоны;
  • бытовая техника.

При наличии указанных источников поблизости, существует фактор поглощенной дозы ионизирующего излучения, единица которого зависит от продолжительности воздействия на организм человека.

Эксплуатация источников ионизирующего излучения происходит ежедневно, например: когда вы работаете за компьютером, смотрите телепередачу или говорите по мобильному телефону, смартфону. Все перечисленные источники в какой-то мере канцерогенные, они способны вызвать тяжелые и смертельные заболевания.

Размещение источников ионизирующего излучения включает в себя перечень важных, ответственных работ, связанных с разработкой проекта по расположению облучающих установок. Во всех источниках излучения содержится определенная единица радиации, каждая из которых оказывает определенное воздействие на организм человека. Сюда можно отнести манипуляции, проводимые для монтажа, введения данных установок в эксплуатацию.

Следует указать, что обязательно проводится утилизация источников ионизирующего излучения.

Это процесс, который помогает вывести из эксплуатации генерирующие источники. Данная процедура состоит из технических, административных мер, которые направлены на обеспечение безопасности персонала, населения, а также присутствует фактор защиты окружающей среды. Канцерогенные источники и оборудование являются огромной опасностью для организма человека, поэтому их нужно утилизировать.

Особенности регистрации излучений

Характеристика ионизирующих излучений показывает, что они невидимые, у них нет запаха и цвета, поэтому их сложно заметить.

Для этого существуют методы регистрации ионизирующих излучений. Что касается способов обнаружения, измерения, то все осуществляется косвенно, за основу берется какое-либо свойство.

Используют такие методы обнаружения ионизирующих излучений:

  • Физический: ионизационный, пропорциональный счетчик, газоразрядный счетчик Гейгера-Мюллера, камера ионизационная, счетчик полупроводниковый.
  • Калориметрический метод обнаружения: биологический, клинический, фотографический, гематологический, цитогенетический.
  • Люминесцентный: счетчики флуоресцентный и сцинтилляционный.
  • Биофизический способ: радиометрия, расчетный.

Дозиметрия ионизирующих излучений осуществляется с помощью приборов, они способны определить дозу излучения. Прибор включает в себя три основные части – счетчик импульса, датчик, источник питания. Дозиметрия излучений возможна благодаря дозиметру, радиометру.

Влияния на человека

Действие ионизирующего излучения на организм человека особенно опасно. Возможны такие последствия :

  • имеется фактор очень глубокого биологического изменения;
  • присутствует накопительный эффект единицы поглощенной радиации;
  • эффект проявляется через время, так как отмечается скрытый период;
  • у всех внутренних органов, систем разная чувствительность к единице поглощенной радиации;
  • радиация влияет на все потомство;
  • эффект зависит от единицы поглощенной радиации, дозы облучения, продолжительности.

Несмотря на использование радиационных приборов в медицине, их действие может быть пагубным. Биологическое действие ионизирующих излучений в процессе равномерного облучения тела, в расчете 100% дозы, происходит следующее:

  • костный мозг – единица поглощенной радиации 12%;
  • легкие – не менее 12%;
  • кости – 3%;
  • семенники, яичники – поглощенной дозы ионизирующего излучения около 25%;
  • железа щитовидная – единица поглощенной дозы около 3%;
  • молочные железы – приблизительно 15%;
  • остальные ткани – единица поглощенной дозы облучения составляет 30%.

В результате могут возникать различные заболевания вплоть до онкологии, паралича и лучевой болезни. Чрезвычайно опасно для детей и беременных, так как происходит аномальное развитие органов и тканей. Токсины, радиация – источники опасных заболеваний.

Источники ионизирующего излучения:

А) закрытые источники – радионуклидные источники излучения, устройство которых исключает поступление содержащихся в них радионуклидов в окружающую среду в условиях применения и износа, на которые он рассчитан, а также устройства, генерирующие ионизирующее излучение (рентгеновские аппараты и т. д.). При работе с закрытыми источниками ионизирующего излучения Человек подвергается только внешнему облучению .

Б) открытые источники – радионуклидные источники излучения, при использовании которых возможно поступление содержащихся в них радиоактивных веществ в окружающую среду. При работе с открытыми источниками ионизирующего излучения возможно загрязнение окружающей среды и попадание радионуклидов внутрь организма, поэтому Человек подвергается не только внешнему, но и внутреннему облучению .

Организация работы с источниками ионизирующего излучения.

Все работы с открытыми радиоактивными веществами подразделяются на Три класса, Которые устанавливаются в зависимости от:

Степени радиационной опасности нуклида как потенциального источника внутреннего облучения: четыре группы (А, Б, В, Г) в зависимости от минимально значимой активности и радиотоксичности

Фактической активности источника на рабочем месте

Класс работ определяет Требования к размещению, набору и оборудованию помещений , в которых проводятся работы с открытыми источниками. Наиболее жесткие требования по радиационной безопасности предъявляются Для помещений с первым классом работ . Все объекты, использующие источники ионизирующего излучения, находятся на учете в органах Государственного санитарного надзора и МВД.

Радиационный дозиметрический контроль (контроль за соблюдением допустимых уровней облучения и индивидуальный дозиметрический контроль) проводится службой радиационной безопасности или специально выделенным лицом. Если годовая эффективная эквивалентная доза на персонал предприятия Не превышает 1/3 ПДД, то индивидуальный дозиметрический контроль можно не проводить .

Радиационному контролю подлежат :

– радиационные характеристики источников излучения, выбросов в атмосферу, жидких и твердых радиоактивных отходов

– радиационные факторы, создаваемые технологическим процессом на рабочих местах и в окружающей среде

– радиационные факторы на загрязненных территориях и в зданиях с повышенным уровнем природного облучения

– уровни облучения персонала и населения от всех источников излучения, на которые распространяется действие настоящих Норм.

Основными контролируемыми параметрами являются:

– годовая эффективная и эквивалентная дозы

– поступление радионуклидов в организм и их содержание в организме для оценки годового поступления

– объемная или удельная активность радионуклидов в воздухе, воде, продуктах питания, строительных материалах и других

– радиоактивное загрязнение кожных покровов, одежды, обуви, рабочих поверхностей

– доза и мощность дозы внешнего излучения

– плотность потока частиц и фотонов.

При возникновении опасности повышенного по сравнению с естественным фоном облучения отдельных контингентов населения в результате радиационной аварии МЗ устанавливает временные дозовые пределы и допустимые уровни облучения населения для данного региона и участвует в выработке необходимых организационных мероприятий по обеспечению радиационной безопасности на данных территориях.

Основные методы защиты от внешнего облучения:

А) защита количеством – снижение мощности или активности источника ионизирующего излучения

Б) защита временен – снижение времени работы с источниками ионизирующего излучения: чем меньше время воздействия ионизирующего излучения на организм, тем меньше доза облучения.

В) защита расстоянием – увеличение расстояния до объекта ионизирующего излучения при работе с ним: излучение от точечного источника уменьшается пропорционально увеличению квадрата расстояния до него

Г) защита экранированием :

1) Против рентгеновского и гамма-излучения – свинец и уран, может быть использовано просвинцованное стекло, железо, бетон и другие материалы с эквивалентным увеличением толщины экрана

2) Против нейтронного излучения :

а. Быстрое нейтронное – материалы, содержащие много ионов водорода (вода, парафин, бетон и т. д.)

б. Тепловые нейтроны – материалы, содержащие кадмий, бор

Дополнительная защита от гамма излучений – свинец.

3) Против бета-потока : материалы с малым атомным номером (органическое стекло, пластмасса, аллюминий)

Основные методы защиты от внутреннего облучения (подробнее – вопрос 50):

А) предотвращение поступления радионуклидов в организм

Б) снижение всасывания радионуклидов, поступающих в ЖКТ

В) увеличение выведения радионуклидов из организма

Обеспечение радиационной безопасности требует комплекса защитных мероприятий в зависимости от активности источников, их агрегатного состояния, видом и энергией излучения, количеством вещества, характером технологического процесса.

Для определения методов и средств защиты от ионизирующих излучений рассмотрим уравнение для определения мощности поглощенной дозы для точечного источника. Под точечным изотропным источником понимается источник одного радионуклидного состава с равномерно распределенной активностью, размеры которого значительно меньше расстояния, на котором рассматривается его действие.

Мощность поглощенной дозы (dD/dt) определяется формулой

где Г 5 - керма-постоянная, Гр м (с Бк) - постоянная для каждого радионуклида величина, значение которой можно найти в справочниках по радиационной безопасности; A(t) - активность источника, зависящая от времени, Бк; г - расстояние до источника, м.

Так как в соответствии с законом радиоактивного распада активность источника изменяется по времени в соответствии с формулой

где A(t) - начальная активность, Бк; X - In 2/Г |/2 - постоянная распада радионуклида, с; Т 1/2 - период полураспада (время, в течение которого распадается половина атомов радионуклида), с;

Таким образом, на основании анализа приведенной формулы можно сделать вывод, что для защиты от ионизирующих излучений необходимо применять следующие методы и средства:

  • снижение активности (количества) радиоизотопа;
  • увеличение расстояния от источника излучения;
  • сокращение времени работы с источником;
  • экранирование излучения с помощью экранов и биологических защит;
  • применение средств индивидуальной защиты.

Увеличение расстояния от источника излучения (защита расстоянием) - достаточно простой и надежный способ защиты. Способ обусловлен способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и молекулами, что в итоге приводит к снижению дозы облучения персонала.

Сокращение времени работы с источником (защита временем) основано на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала.

Экранирование излучения с помощью экранов (защита экранами) является наиболее эффективным способом защиты от излучения.

Проектируя защитные экраны, определяют толщину, материал экрана в зависимости от вида энергии излучения.

Защитные экраны от альфа-излучения , как правило, не применяются, так как это излучение обладает малой проникающей способностью. Слой воздуха в несколько сантиметров или более плотного материала в несколько миллиметров (стекло, картон, фольга, одежда и т.п.) обеспечивает достаточно полное поглощение альфа-излучения.

При экранировании бета-частиц в материале экрана возникает тормозное рентгеновское или гамма-излучение, что должно учитываться при изготовлении экранов. Для полного поглощения потока бета-излучения толщина 5р защитного экрана может быть приближенно определена по формуле

где /р - длина пробега бета-частиц, г/см 2 . Для Е тгх > 0,8 МэВ 1 р = = 0,541? тах - 0,15; р - плотность материала экрана, г/см 3 ; Е тях - максимальная энергия бета-частиц.

Для защитных экранов применяют алюминий, стекло, плексиглас, свинец, облицованный материалами с малым атомным номером.

Для защиты от гамма-излучения экраны выполняют из материалов с большим атомным номером и большой плотностью (свинец, вольфрам). Для стационарных сооружений применяют бетон, баритобе- тон, чугун, сталь, являющимися одновременно строительными конструкциями.

Толщину защитных экранов от гамма-излучений можно определить по номограмме (рис. 11.3) и по формуле

где 8 у - толщина защитного экрана, см; р - линейный коэффициент ослабления, см -1 ; N - необходимая кратность гамма-излучения на рабочем месте определяется как отношение измеренной мощности дозы на рабочем месте без защитного экрана (Р изм) к мощности дозы, до которой ее необходимо снизить (Р 0), N = Р цш /Р 0 -


Рис. 11.3.

из свинца: 1 - 192 1г; 2 - 137 Cs; 3 - 60 Со; из железа: 4 - 192 1г; 5 - 137 Cs; 6 - 60 Со

Нейтроны очень плохо поглощаются веществом. Поэтому задача защиты от нейтронов состоит в замедлении быстрых нейтронов и последующем поглощении уже замедленных тепловых нейтронов. Лучшими для защиты от нейтронного излучения являются водородосодержащие вещества, т.е. вещества, имеющие в своей химической формуле атомы водорода. Обычно в качестве защитных материалов от быстрых нейтронов используются вода, парафин, графит, бериллий. Тепловые нейтроны хорошо поглощаются бором, кадмием. Поскольку нейтронные излучения сопровождаются гамма-излучениями, необходимо применять многослойные экраны из различных материалов: свинец-полиэтилен, сталь-вода и т.д. В ряде случаев для одновременного поглощения нейтронного и гамма-излучений применяют водные растворы гидроокисей тяжелых металлов, например гидроокиси железа Fe 2 (OH) 3 .

Защитные экраны применяются различных конструкций. Они могут выполняться в виде защитных боксов (рис. 11.4), передвижных и стационарных экранов (рис. 11.5-11.6), сейфов для хранения радиоактивных препаратов.

Рис. 11.5. а - защитный экран 2ЭН из органического стекла;

6 - защитный экран передвижной 4ЭН с двумя захватами

Для дистанционной работы с источниками в защитных боксах и экранах применяют самодержащие захваты. Для транспортирования и хранения используются контейнеры и сейфы, выполненные из стали, свинца, чугуна (рис. 11.7).

Рис. 11Л Настольный бокс:

  • 1 - корпус; 2 - воздушный шлюз;
  • 3 - разъемы электропитания; 4 - фильтр;
  • 5 - вытяжка; 6 - вентилятор; 7 - фланец для крепления труб; 8 - пульт электропитания;
  • 9 - светильник; 10 - патрубки; 11 - штатив для аппаратуры; 72- смотровое стекло;
  • 13 - дверка с фильтром; 14 - резиновые перчатки

Всякие работы с радиоактивными изотопами, а также техническое обслуживание приборов и установок, в которых используются изотопы, должны проводиться в специально оборудованных, отдельных помещениях с системой вентиляции. Работа на установках с радиоактивными изотопами должна выполняться лицами старше 18 лет, прошедшими специальное обучение, в том числе безопасным методам работы на данной установке. Все работники должны находиться под постоянным медицинским наблюдением, им регламентируется продолжительность рабочего дня, выдается спецодежда и приборы индивидуального дозиметрического контроля.

Рис. 11.В. Передвижной экран для защиты от радиоактивных излучений: 1 - смотровое окно: 2 - манипуляторы: 3 - механизм передвижения

Рис. 11.7. Оборудование для транспортировки и хранения: 7 - дверца с замком; 2 - кожух; 3 - указатель; 4 - маховик;

5 - барабан

Защита от рентгеновского излучения. Применяемые в радиолокационной аппаратуре и в аппаратуре диспетчерского контроля электроннолучевые трубки, магнетроны, клистроны и др., работающие при напряжениях выше 6 кВ, являются источниками мягкого рентгеновского излучения. Поэтому при технической эксплуатации радиоаппаратуры, питающиеся напряжением выше 15 кВ, необходимо использовать защитные средства с целью предотвращения рентгеновского облучения операторов и инженерно-технических работников.

В качестве защитных средств от действия мягких рентгеновских лучей применяются экраны из стального листа (0,5... 1 мм) или алюминия (3 мм), а также из специальной резины. Смотровые окна в рентгеновских установках выполняются из плексигласа (30 мм) или освинцованного стекла (8 мм).

Средства индивидуальной защиты. Для защиты человека от внутреннего облучения при попадании радиоизотопов внутрь организма с вдыхаемым воздухом применяют респираторы, противогазы. В качестве основной спецодежды применяют халаты, комбинезоны из неокрашенной хлопчатобумажной ткани, а также хлопчатобумажные шапочки.

При опасности значительного загрязнения помещения радиоактивными изотопами поверх хлопчатобумажной одежды надевают пленочную (нарукавники, брюки, фартук, бахилы на ноги и т.п.), покрывающую все тело или места возможного наибольшего загрязнения. В качестве материалов для пленочной одежды применяют пластики, резину и другие материалы, которые легко очищаются от радиоактивных загрязнений. При работе с радиоактивными изотопами высокой активности используют перчатки из просвинцованной резины. При высоких уровнях радиоактивного загрязнения применяют пневмокостюмы из пластических материалов с принудительной подачей чистого воздуха под костюм (рис. 11.8).

Рис. 11.8.

Пневмокостюм

Для защиты глаз применяют очки закрытого типа со стеклами, содержащими фосфат вольфрама или свинец.

Нормирование воздействия ионизирующих излучений

В России предельно допустимые уровни ионизирующего облучения и принципы радиационной безопасности регламентируются «Нормами радиационной безопасности» НРБ-99/2009, «Основными санитарными правилами работы с радиоактивными веществами и другими источниками ионизирующих излучений» ОСПОРБ-99/2010. В соответствии с этими нормативными документами нормы облучения установлены для следующих категорий лиц:

Персонал (группы А и Б) – лица, постоянно работающие с источниками ионизирующих излучений (группа А) или находящиеся по условиям своей работы в сфере их воздействия (группа Б);

Всё население, включая лиц из персонала, вне сферы и условий их производственной деятельности.

В НРБ 99/2009приведены основные пределы доз по эффективной и эквивалентной дозе для персонала группы А и населения. Основные пределы доз для персонала группы Б равны 25% от пределов доз для персонала группы А.

Основные пределы доз облучения не включают в себя дозы от природного и медицинского облучения, а также дозы вследствие радиационных аварий.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для населения за период жизни (70 лет) – 70мЗв.

Для студентов и учащихся старше 16 лет, проходящих профессиональное обучение с использованием источников излучения, годовые дозы не должны превышать значений, установленных для персонала группы Б.

Планируемое облучение персонала группы А выше установленных пределов доз при ликвидации или предотвращении аварии может быть разрешено только в случае необходимости спасения людей или предотвращения их облучения. Планируемое повышенное облучение допускается для мужчин старше 30 лет лишь при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья.

Лица, подвергшиеся облучению в эффективной дозе, превышающей 100 мЗв в течение года, при дальнейшей работе не должны подвергаться облучению в дозе свыше 20 мЗв в год.

Облучение эффективной дозой свыше 200 мЗв в течение года должно рассматриваться как потенциально опасное. Лица, подвергшиеся такому облучению, должны немедленно выводиться из зоны облучения и направляться на медицинское обследование.

Основные принципы радиационной безопасности заключаются в непревышении установленного основного дозового предела, исключении всякого необоснованного облучения и снижении дозы излучения до возможно низкого уровня. С целью реализации этих принципов на практике обязательно контролируются дозы облучения, полученные персоналом при работе с источниками ионизирующих излучений, работа проводится в специально оборудованных помещениях, используется защита расстоянием и временем, уменьшение мощности источников до минимальной величины, применяются различные средства коллективной и индивидуальной защиты.


Для определения индивидуальных доз облучения персонала необходимо систематически проводить радиационный (дозиметрический) контроль, объем которого зависит от характера работы с радиоактивными веществами. Каждому оператору, имеющему контакт с источниками ионизирующих излучений, выдаётся индивидуальный дозиметр для контроля полученной дозы гамма-излучений.

В помещениях, где проводится работа с радиоактивными веществами, необходимо обеспечить и общий контроль за интенсивностью различных видов излучений. Эти помещения должны быть изолированы от прочих помещений, оснащены системой приточно-вытяжной вентиляции с кратностью воздухообмена не менее пяти.

Все строительные конструкции в помещениях, где проводится работа с радиоактивными веществами, не должны иметь трещин; углы закругляют для того, чтобы не допустить скопления в них радиоактивной пыли и облегчить уборку. Не менее одного раза в месяц проводят генеральную уборку помещений с обязательным мытьём горячей мыльной водой стен, окон, дверей, мебели и оборудования. Текущая влажная уборка помещений проводится ежедневно.

Коллективные средства защиты от ионизирующих излучений регламентируются ГОСТом 12.4.120-83 «Средства коллективной защиты от ионизирующих излучений. Общие требования». В соответствии с этим нормативным документом основными средствами защиты являются стационарные и передвижные защитные экраны, контейнеры для транспортирования и хранения источников ионизирующих излучений, а также для сбора и транспортировки радиоактивных отходов, защитные сейфы и боксы и др.

Стационарные и передвижные защитные экраны предназначены для снижения уровня излучения на рабочем месте до допустимой величины. Если работу с источниками ионизирующих излучений проводят в специальном помещении – рабочей камере, то экранами служат ее стены, пол и потолок, изготовленные из защитных материалов . Такие экраны носят название стационарных. Для устройства передвижных экранов используют различные щиты , поглощающие или ослабляющие излучение.

Экраны изготавливают из различных материалов. Их толщина зависит от вида ионизирующего излучения и свойств защитного материала.

Для сооружения стационарных средств защиты стен, перекрытий, потолков и т. д. используют кирпич, бетон, баритобетон и баритовую штукатурку (в их состав входит сульфат бария – BaSO 4). Эти материалы надёжно защищают персонал от воздействия гамма- и рентгеновского излучения.

Для создания передвижных экранов используют различные материалы. Защита от альфа-излучения достигается применением экранов из обычного или органического стекла толщиной несколько миллиметров. Достаточной защитой от этого вида излучения является слой воздуха в несколько сантиметров.

Для защиты от бета-излучения экраны изготавливают из материалов с небольшим атомным весом (алюминий, пластмасса, органическое стекло). При использовании для защиты от бета-излучения материалов с большим атомным весом возникает вторичное излучение.

От гамма- и рентгеновского излучения эффективно защищают материалы с большим атомным номером и высокой плотностью (свинец, сталь, вольфрамовые сплавы). Смотровые системы изготавливают из специальных прозрачных материалов, например, свинцового стекла.

От нейтронного излучения защищают материалы, содержащие в составе водород (вода, парафин), а также бериллий, графит, соединения бора и т.д. Бетон также можно использовать для защиты от нейтронов.

Защитные сейфы применяются для хранения источников гамма-излучения. Они изготавливаются из свинца и стали.

Для работы с радиоактивными веществами, обладающими, альфа- и бета-активностью, используют защитные перчаточные боксы.

Защитные контейнеры и сборники для радиоактивных отходов изготавливаются из тех же материалов, что и экраны – органического стекла, стали, свинца и др.

К средствам индивидуальной защиты от ионизирующих излучений относится спецодежда – халаты, комбинезоны, полукомбинезоны и шапочки, изготовленные из хлопчатобумажной ткани. При значительном загрязнении производственного помещения радиоактивными веществами на спецодежду из ткани дополнительно надевают плёночную одежду (нарукавники, брюки, фартук, халат и т.д.), изготовленную из пластика. Как уже сказано выше, для защиты рук следует использовать просвинцованные резиновые перчатки.

В тех случаях, когда приходится работать в условиях значительного радиационного загрязнения, для защиты персонала используют пневмокостюмы (скафандры) из пластмассовых материалов с поддувом по гибким шлангам воздуха или снабженные кислородным аппаратом. Для поддержания нормальных температурных условий в скафандре расход воздуха должен составлять 150–200 л/мин.

Для защиты органов зрения от излучения применяют очки со стеклами, содержащими специальные добавки (фосфат вольфрама или свинец), а при работе с источниками альфа- и бета-излучений глаза защищают щитками из органического стекла.

Если в воздухе находятся радиоактивные аэрозоли, то надежным средством защиты органов дыхания являются респираторы и противогазы.

Защита персонала при работе с источниками ионизирующего излучения

При работе с источниками ионизирующих излучений важное значение приобретает правильная организация труда, которая обеспечивает радиационную безопасность обслуживающего персонала и всего населения в целом.


Безопасность должна быть характерной чертой самих технологических процессов. В любом случае выгоднее правильно спроектировать производство, чем потом создавать различные средства защиты от вредных воздействий. Если необходимо использование источника ионизирующего излучения, то его следует держать подальше от работающих во избежание возможного контакта или удалить настолько, чтобы его вредное воздействие не сказывалось.


Телекамеры позволяют наблюдать за местами, пребывание в которых нежелательно для человека, а производственные операции, сопряженные с опасностью облучения, можно осуществлять при помощи дистанционного управления. Применение промышленных роботов позволяет значительно облегчить задачи, связанные с обеспечением радиационной безопасности.


При разработке мер защиты от излучения прежде всего следует учитывать радиационную опасность предприятия в целом. В проектах строящихся и реконструируемых предприятий должны предусматриваться предельно допустимые выбросы (ПДВ) и размеры санитарно-защитной зоны. ПДВ рассчитывают с учетом доз внешнего и внутреннего облучения, обусловленного поступлением радионуклидов от данного предприятия в атмосферу.


Различают работы с закрытыми и открытыми источниками ионизирующих излучений.


В первом случае возможно только внешнее облучение, поэтому необходима защита от рентгеновского и у-излучений. Из закономерностей распространения ионизирующих излучений и характера их взаимодействия с веществом вытекают основные принципы обеспечения радиационной безопасности персонала: уменьшение мощности источников до минимальных величин ("защита количеством"), сокращение времени работы с источниками ("защита временем"), увеличение расстояния от источников до работающих ("защита расстоянием") и экранирование источников излучения материалами, поглощающими ионизирующие излучения ("защита экранами").


При работе с открытыми источниками может происходить внешнее облучение в- и у-нуклидами, а также загрязнение воздуха, оборудования, одежды радиоактивными газами, аэрозолями, парами и растворами. При этом создаются условия для попадания радиоактивных веществ внутрь организма и его облучения, в силу чего применение открытых радиоактивных веществ требует более сложных мер защиты от внешнего и внутреннего облучения.


Меры защиты от внутреннего облучения при работе с открытыми радиоактивными веществами сводятся к соответствующим устройству и планировке помещений, соблюдению специальных требований к оборудованию, вентиляции, отоплению, водоснабжению и канализации, к организации и режиму работы, личной гигиене и др. Вес эти требования направлены на то, чтобы не допустить или свести к минимуму загрязнение воздуха радиоактивными газами, парами, аэрозолями, а также загрязнение оборудования, аппаратуры, помещения, спецодежды и рук.


Конкретные формы этих мероприятий устанавливаются в зависимости от производственных и трудовых процессов. Особое внимание должно быть уделено сбору, удалению и захоронению твердых и высокоактивных жидких отходов, которые могут вызвать загрязнение окружающей природной среды.


Радиационная опасность, определяемая по активности используемых радиоактивных веществ, диктует в первую очередь требования, предъявляемые к устройству помещений, лабораторий и предприятий (табл. 5.6).


Таблица 5.6. Зависимость класса работ (I-III) от группы радиотоксичности радиоактивного изогона и фактического его количества (активности) на рабочем месте (ОСП-72/87)

Согласно "Санитарным правилам", для работ I класса необходимо выделять здания или помещения (с отдельным входом), полностью изолированные от других помещений. Предусматривается трехзональная планировка помещений: первая (чистая) зона - операторские и вспомогательные помещения, где нет активных загрязнений; вторая (грязная) зона - зона, в которой непосредственно проводятся работы с радиоактивными веществами, и третья (грязная) зона - ремонтно-транспортная; сообщение между чистой и грязными зонами осуществляется через санпропускник или шлюз.


Работы II класса следует проводить в специально оборудованных изолированных помещениях.


Проведение работ III класса можно разрешить в общих помещениях лаборатории на специально оборудованных местах.


Специальная подготовка рабочих зон, предназначенных для работы с радиоактивными веществами, заключается в следующем: стены, потолки, двери делают гладкими; все углы в помещениях закругляют, стены покрывают масляной краской; полы изготавливают из плотных материалов, которые не впитывают жидкости. В помещении обязательно должна быть приточно-вытяжная вентиляция с не менее чем 5-кратным обменом воздуха.


Порядок получения, транспортировки и хранения радиоактивных веществ определяется специальными правилами. В частности, для этих целей используют особые транспортные контейнеры, а стационарные хранилища заглубляют в землю.


В комплексе профилактических мероприятий большое значение занимают меры индивидуальной защиты и личной гигиены: обеспечение спецодеждой, обувью, пневмокостюмам и, перчатками, респираторами "Лепесток", оборудование санпропускников и т.п. Для стирки спецодежды должны быть оборудованы также специальные прачечные.


В рабочих помещениях не разрешаются курение, хранение и прием пищи.


Однако установление допустимых доз и уровней радиации -только одна сторона проблемы обеспечения радиационной безопасности. Другая состоит в модификации самого лучевого поражения.


Реальной возможностью повышения радиоустойчивости организма является использование средств химической защиты. Возможность эффективной химической защиты организма от лучевой гибели экспериментально установлена, однако поиски стабильных нетоксичных и эффективных протекторов находятся в начальных стадиях.


В основном ведутся работы по усовершенствованию препаратов, содержащих SH-группы и защищающих клетки от гибели под действием у- и рентгеновских лучей благодаря способности этих молекул "убирать" образующиеся свободные радикалы.


Следует учитывать и то, что нередко люди, подвергающиеся профессиональному облучению, обладают повышенной радиочувствительностью. У них признаки лучевой патологии проявляются даже при допустимых дозах. Этот факт наряду с невозможностью абсолютной защиты от хронического переоблучения вызывает необходимость поиска не только новых химических радиопротекторов, но и других, альтернативных путей повышения индивидуальной радиорезистентности.


Примером может служить профессиональный отбор критериев для прогнозирования радиорезистентности. К способам повышения природной радиоустойчивости можно отнести диетическое питание и физическую тренировку.