Дробно рациональные. Рациональное уравнение. Исчерпывающий гид (2019)

Класс 9.

Тема урока: «Дробные рациональные уравнения»

Тип урока: комбинированный.

Цели:

1. Образовательные: дать определение «дробно-рациональные уравнения», показать способы решения таких уравнений.

2. Развивающие: развитие умений и навыков решать примеры с данным типом уравнений, находить корни дробно-рациональных уравнений.

3. Воспитывающие: воспитывать внимание, внимательность, активность, аккуратность; уважительное отношение к матери.

Задачи: заинтересовать учеников предметом, показать важность умения решать разные уравнения и задачи.

Материально- техническое оснащение:

Мультимедиа проектор, экран, презентация к уроку «Дробные рациональные уравнения»

Время: 45 минут

План урока.

Этапы урока

Деятельность учителя

Деятельность ученика

I . Организационный момент. (1 мин.)

Приветствует учащихся, проверка их готовность к уроку.

Приветствуют учителя.

II . Сообщение темы и целей урока. (2 мин)

Сообщает тему и цель урока.

Записывают тему в тетрадь.

III . Повторение пройденной темы. (2 мин)

Задает вопросы на повторение пройденной темы.

Отвечают на вопросы.

IV . Изучение нового материала. (15 мин.)

Демонстрирует слайды, сопровождает рассказом.

Слушает, задает целенаправленные вопросы в роли рядового участника

Обсуждают предмет с учителем и получают при необходимости информацию, устанавливают цели, планируют траекторию работы.

Вырабатывают план действий, формируют задачи.

Выполняют поиск информации, сбор данных и фактов истории, первично исследуют полученную информацию, решают промежуточные задачи.

V . Физкультминутка. (1 мин.)

Выполняет физкультминутку

Выполняют физкультминутку

VI . Закрепление материала. (20 мин.)

Решение задач, предлагает вопросы на закрепление.

Решают задачи в тетрадях, у доски, задают вопросы учителю.

VIII . Подведение итогов урока.(4мин)

Оценивает работу учащихся.

Говорят о том, чему научились на уроке. Убирают рабочие места.

ХОД УРОКА

I. Рефлексия начала урока (музыка; презентация о матери).

Проверка готовности к уроку.

II. Сообщение новой темы, цели и задачи :

Учитель: Здравствуйте! Посмотрите, пожалуйста, друг на друга и от всей души улыбнитесь.

Сегодняшний урок я бы хотела начать со слов М. Горького:

Слайд 1
Без солнца не цветут цветы,

без любви нет счастья,

без женщин нет любви,

без матери нет ни поэта, ни героя.

Вся гордость мира – от матерей.
(М. Горький)

Учитель:

– Что может быть на свете священнее имени матери! …

Человек, еще не сделавший ни одного шага по земле и только – только начинающий «лопотать», неуверенно и старательно складывает по слогам «мама» и, почувствовав свою удачу, смеется, счастливый …

Когда ребенок вскрикнет первый раз

И мать его коснется осторожно,

Ее любовь… О, как она тревожна.

Тревожна каждый день и час.

Ребята, скоро День Матери, поэтому сегодняшний урок я хочу связать с этой темой. Мы с вами на прошлых уроках научились решать, находить корни различных уравнений, сегодня мы продолжим знакомиться с одним из видов уравнений – это дробные рациональные уравнения, выясним важность уравнений, и вспомним, как решать задачи с помощью уравнений. Постараемся не подвести свою маму, решать будем внимательно и не отвлекаясь, готовиться к ГИА. Мать каждого из вас хочет, чтобы её ребёнок был самым лучшим. Итак, сегодня у нас урок изучения новой темы (слайд 2).

III. Повторение пройденной темы.

1. Проверка домашнего задания (слайд 3).

№925(а, б), №935(а, б), №936.

2. Устно повторяем (слайд 3 ,4,5,6 ).

Повторим:

Как называется данное уравнение? Сколько корней имеет данное уравнение?

IV . Изучение нового материала. (слайд 7).

Учитель: Уравнение y (x ) =0 называют дробным рациональным уравнением, если выражение y (x ) является дробным (т.е. содержит деление на выражение с переменными).

Для решения рационального уравнения его необходимо преобразовать в линейное или квадратное уравнение, решить это уравнение и отбросить те корни, которые не входят в ОДЗ (область допустимых значений) исходного рационального уравнения.

Откройте учебник на стр.78 и прочитаем правило. С этой темой вы уже работали в 8 классе.

Алгоритм решения дробных рациональных уравнений: ( слайд 8).

    (приложение 1)

Учитель: А теперь вместе со мной давайте решим дробно-рациональное уравнение по алгоритму (слайд 9).

VI . Самостоятельная работа (слайд 10).

Твое письмо. Твои родные строки.

Последний материнский твой наказ:

«Законы жизни мудры и жестоки.

Живи. Трудись. Не порть слезами глаз.

Моя любовь с тобой всегда. Навеки.

Ты жизнь люби. Она ведь хороша.

Людей люби. И помни – в человеке

что главное? Высокая душа».

Давайте и мы с вами постараемся, чтобы у нас была «высокая душа». А для этого надо уважать и любить родителей, конечно, стараться учиться и хорошо сдать гос. экзамены. Займёмся подготовкой к аттестации.

Самостоятельная работа. Самоконтроль – 4 варианта. Проверка вашей честности. Работа выполняется в тетрадях. В ходе выполнения работы учащиеся определяют для себя алгоритм решения дробных рациональных уравнений. На каждой парте – таблица – напоминание «Алгоритм решения дробных рациональных уравнений». Приложение 1.

В а р и а н т 1.

В а р и а н т 2.

В а р и а н т 3.

В а р и а н т 4.

О т в е т ы:

I вариант:
,
(
;
).

II вариант:
(
;
)

III вариант:
(

)

IV вариант:
,
(
;
).

VII . Физкультминутка (слайд 11).

Учитель: А теперь разминка.

Повернитесь ко мне. Я проговариваю предложения. Если оно справедливо – вы встаёте, если нет – то остаётесь сидеть.

1) 5х = 7 имеет единственный корень.

2) 0х = 0 не имеет корней.
3) Если Д 0, то квадратное уравнение имеет два корня.
4) Если Д
5) Количество корней не больше степени уравнения.

VIII . Закрепление и повторение материала. (слайд 12).

Учитель. Мужчины перед своими любимыми хотят выглядеть только мужественными, только сильными, только несгибаемыми. Возможно, это и делает их мужчинами. И только перед родной матерью не боятся они обнажить свои слабости и неудачи, признаться в ошибках и потерях, потому что, как бы далеко они не ушли в своем возрасте и развитии, перед нею они и седые – все равно дети. А уж она понимает сердцем, что бедному да обиженному, прежде всего, всех нужнее – мать. Сегодня у всех будут хорошие оценки, поэтому обиженных, я думаю, не будет.

    Решаем задачу № 942 из учебника. (Алгебра – 9 класс/ Ю.Н. Макарычев) (слайд 13).

1-я автомашина

x -20 км/ч

ч

2-я автомашина

x км/ч

ч

    Решить пример на доске. (слайд 14).

№289(а)

VII . Подведение итогов урока .

Что нового вы узнали на уроке?

    Чему вы научились на уроке?

2. Алгоритм решения дробных рациональных уравнений:

Учитель оценивает работу учащихся и выставляет оценки.

Учитель. Приобретая черты символа и выполняя огромную общественную миссию, мать никогда не теряла привычные человеческие черты, оставаясь радушной хозяйкой и умной собеседницей, старательной работницей и прирожденной песенницей, широкой в застолье и мужественной в горе, открытой в радости и сдержанной в печали, и всегда доброй, понимающей и женственной! Я очень хочу, чтобы мечты ваших родителей осуществились, пусть вы будете достойными людьми (слайд 15).

VIII . Домашнее задание . №943, №940(а, б), №290 (слайд 16).

Приложение 1.

Алгоритм решения дробных рациональных уравнений:

    Найти допустимые значения дробей, входящих в уравнение.

    Найти общий знаменатель дробей, входящих в уравнение.

    Умножить обе части уравнения на общий знаменатель.

    Решить получившееся уравнение.

    Исключить корни, не входящие в допустимые значения дробей уравнения.

Мы уже научились решать квадратные уравнения. Теперь распространим изученные методы на рациональные уравнения.

Что такое рациональное выражение? Мы уже сталкивались с этим понятием. Рациональными выражениями называются выражения, составленные из чисел, переменных, их степеней и знаков математических действий.

Соответственно, рациональными уравнениями называются уравнения вида: , где - рациональные выражения.

Раньше мы рассматривали только те рациональные уравнения, которые сводятся к линейным. Теперь рассмотрим и те рациональные уравнения, которые сводятся и к квадратным.

Пример 1

Решить уравнение: .

Решение:

Дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель не равен 0.

Получаем следующую систему:

Первое уравнение системы - это квадратное уравнение. Прежде чем его решать, поделим все его коэффициенты на 3. Получим:

Получаем два корня: ; .

Поскольку 2 никогда не равно 0, то необходимо, чтобы выполнялись два условия: . Поскольку ни один из полученных выше корней уравнения не совпадает с недопустимыми значениями переменной, которые получились при решении второго неравенства, они оба являются решениями данного уравнения.

Ответ: .

Итак, давайте сформулируем алгоритм решения рациональных уравнений:

1. Перенести все слагаемые в левую часть, чтобы в правой части получился 0.

2. Преобразовать и упростить левую часть, привести все дроби к общему знаменателю.

3. Полученную дробь приравнять к 0, по следующему алгоритму: .

4. Записать те корни, которые получились в первом уравнении и удовлетворяют второму неравенству, в ответ.

Давайте рассмотрим еще один пример.

Пример 2

Решить уравнение: .

Решение

В самом начале перенесем все слагаемые в левую сторону, чтобы справа остался 0. Получаем:

Теперь приведем левую часть уравнения к общему знаменателю:

Данное уравнение эквивалентно системе:

Первое уравнение системы - это квадратное уравнение.

Коэффициенты данного уравнения: . Вычисляем дискриминант:

Получаем два корня: ; .

Теперь решим второе неравенство: произведение множителей не равно 0 тогда и только тогда, когда ни один из множителей не равен 0.

Необходимо, чтобы выполнялись два условия: . Получаем, что из двух корней первого уравнения подходит только один - 3.

Ответ: .

На этом уроке мы вспомнили, что такое рациональное выражение, а также научились решать рациональные уравнения, которые сводятся к квадратным уравнениям.

На следующем уроке мы рассмотрим рациональные уравнения как модели реальных ситуаций, а также рассмотрим задачи на движение.

Список литературы

  1. Башмаков М.И. Алгебра, 8 класс. - М.: Просвещение, 2004.
  2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра, 8. 5-е изд. - М.: Просвещение, 2010.
  3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра, 8 класс. Учебник для общеобразовательных учреждений. - М.: Просвещение, 2006.
  1. Фестиваль педагогических идей "Открытый урок" ().
  2. School.xvatit.com ().
  3. Rudocs.exdat.com ().

Домашнее задание

\(\bullet\) Рациональное уравнение - это уравнение, представимое в виде \[\dfrac{P(x)}{Q(x)}=0\] где \(P(x), \ Q(x)\) - многочлены (сумма “иксов” в различных степенях, умноженных на различные числа).
Выражение в левой части уравнения называется рациональным выражением.
ОДЗ (область допустимых значений) рационального уравнения – это все значения \(x\) , при которых знаменатель НЕ обращается в нуль, то есть \(Q(x)\ne 0\) .
\(\bullet\) Например, уравнения \[\dfrac{x+2}{x-3}=0,\qquad \dfrac 2{x^2-1}=3, \qquad x^5-3x=2\] являются рациональными уравнениями.
В первом уравнении ОДЗ – это все \(x\) , такие что \(x\ne 3\) (пишут \(x\in (-\infty;3)\cup(3;+\infty)\) ); во втором уравнении – это все \(x\) , такие что \(x\ne -1; x\ne 1\) (пишут \(x\in (-\infty;-1)\cup(-1;1)\cup(1;+\infty)\) ); а в третьем уравнении никаких ограничений на ОДЗ нет, то есть ОДЗ – это все \(x\) (пишут \(x\in\mathbb{R}\) ). \(\bullet\) Теоремы:
1) Произведение двух множителей равно нулю тогда и только тогда, когда один из них равен нулю, а другой при этом не теряет смысла, следовательно, уравнение \(f(x)\cdot g(x)=0\) равносильно системе \[\begin{cases} \left[ \begin{gathered}\begin{aligned} &f(x)=0\\ &g(x)=0 \end{aligned} \end{gathered} \right.\\ \text{ОДЗ уравнения} \end{cases}\] 2) Дробь равна нулю тогда и только тогда, когда числитель равен нулю, а знаменатель не равен нулю, следовательно, уравнение \(\dfrac{f(x)}{g(x)}=0\) равносильно системе уравнений \[\begin{cases} f(x)=0\\ g(x)\ne 0 \end{cases}\] \(\bullet\) Рассмотрим несколько примеров.

1) Решите уравнение \(x+1=\dfrac 2x\) . Найдем ОДЗ данного уравнения – это \(x\ne 0\) (так как \(x\) находится в знаменателе).
Значит, ОДЗ можно записать так: .
Перенесем все слагаемые в одну часть и приведем к общему знаменателю: \[\dfrac{(x+1)\cdot x}x-\dfrac 2x=0\quad\Leftrightarrow\quad \dfrac{x^2+x-2}x=0\quad\Leftrightarrow\quad \begin{cases} x^2+x-2=0\\x\ne 0\end{cases}\] Решением первого уравнения системы будут \(x=-2, x=1\) . Видим, что оба корня ненулевые. Следовательно, ответ: \(x\in \{-2;1\}\) .

2) Решите уравнение \(\left(\dfrac4x - 2\right)\cdot (x^2-x)=0\) . Найдем ОДЗ данного уравнения. Видим, что единственное значение \(x\) , при котором левая часть не имеет смысла – это \(x=0\) . Значит, ОДЗ можно записать так: \(x\in (-\infty;0)\cup(0;+\infty)\) .
Таким образом, данное уравнение равносильно системе:

\[\begin{cases} \left[ \begin{gathered}\begin{aligned} &\dfrac 4x-2=0\\ &x^2-x=0 \end{aligned} \end{gathered} \right.\\ x\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \left[ \begin{gathered}\begin{aligned} &\dfrac 4x=2\\ &x(x-1)=0 \end{aligned} \end{gathered} \right.\\ x\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \left[ \begin{gathered}\begin{aligned} &x=2\\ &x=1\\ &x=0 \end{aligned} \end{gathered} \right.\\ x\ne 0 \end{cases} \quad \Leftrightarrow \quad \left[ \begin{gathered}\begin{aligned} &x=2\\ &x=1 \end{aligned} \end{gathered} \right.\] Действительно, несмотря на то, что \(x=0\) - корень второго множителя, если подставить \(x=0\) в изначальное уравнение, то оно не будет иметь смысла, т.к. не определено выражение \(\dfrac 40\) .
Таким образом, решением данного уравнения являются \(x\in \{1;2\}\) .

3) Решите уравнение \[\dfrac{x^2+4x}{4x^2-1}=\dfrac{3-x-x^2}{4x^2-1}\] В нашем уравнении \(4x^2-1\ne 0\) , откуда \((2x-1)(2x+1)\ne 0\) , то есть \(x\ne -\frac12; \frac12\) .
Перенесем все слагаемые в левую часть и приведем к общему знаменателю:

\(\dfrac{x^2+4x}{4x^2-1}=\dfrac{3-x-x^2}{4x^2-1} \quad \Leftrightarrow \quad \dfrac{x^2+4x-3+x+x^2}{4x^2-1}=0\quad \Leftrightarrow \quad \dfrac{2x^2+5x-3}{4x^2-1}=0 \quad \Leftrightarrow\)

\(\Leftrightarrow \quad \begin{cases} 2x^2+5x-3=0\\ 4x^2-1\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} (2x-1)(x+3)=0\\ (2x-1)(2x+1)\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \left[ \begin{gathered} \begin{aligned} &x=\dfrac12\\ &x=-3 \end{aligned}\end{gathered} \right.\\ x\ne \dfrac 12\\ x\ne -\dfrac 12 \end{cases} \quad \Leftrightarrow \quad x=-3\)

Ответ: \(x\in \{-3\}\) .

Замечание. Если ответ состоит из конечного набора чисел, то их можно записывать через точку с запятой в фигурных скобках, как показано в предыдущих примерах.

Задачи, в которых требуется решить рациональные уравнения, в ЕГЭ по математике встречаются каждый год, поэтому при подготовке к прохождению аттестационного испытания выпускникам непременно стоит самостоятельно повторить теорию по данной теме. Уметь справляться с такими заданиями обязательно должны выпускники, сдающие как базовый, так и профильный уровень экзамена. Усвоив теорию и разобравшись с практическими упражнениями по теме «Рациональные уравнения», учащиеся смогут решать задачи с любым количеством действий и рассчитывать на получение конкурентных баллов по итогам сдачи ЕГЭ.

Как подготовиться к экзамену вместе с образовательным порталом «Школково»?

Иногда найти источник, в котором полноценно представлена базовая теория для решения математических задач, оказывается достаточно сложно. Учебника может просто не оказаться под рукой. А найти необходимые формулы иногда бывает достаточно сложно даже в Интернете.

Образовательный портал «Школково» избавит вас от необходимости поиска нужного материала и поможет качественного подготовиться к прохождению аттестационного испытания.

Всю необходимую теорию по теме «Рациональные уравнения» наши специалисты подготовили и изложили в максимально доступной форме. Изучив представленную информацию, учащиеся смогут восполнить пробелы в знаниях.

Для успешной подготовки к ЕГЭ выпускникам необходимо не только освежить в памяти базовый теоретический материал по теме «Рациональные уравнения», но попрактиковаться в выполнении заданий на конкретных примерах. Большая подборка задач представлена в разделе «Каталог».

Для каждого упражнения на сайте наши специалисты прописали алгоритм решения и указали правильный ответ. Учащиеся могут практиковаться в решении задач различной степени сложности в зависимости от уровня подготовки. Перечень заданий в соответствующем разделе постоянно дополняется и обновляется.

Изучить теоретический материал и отточить навыки решения задач по теме «Рациональные уравнения», подобных тем, которые включены в тесты ЕГЭ, можно в режиме онлайн. В случае необходимости любое из представленных заданий можно добавить в раздел «Избранное». Еще раз повторив базовую теорию по теме «Рациональные уравнения», старшеклассник сможет в дальнейшем вернуться к задаче, чтобы обсудить ход ее решения с преподавателем на уроке алгебры.

Проще говоря, это уравнения, в которых есть хотя бы одна с переменной в знаменателе.

Например:

\(\frac{9x^2-1}{3x}\) \(=0\)
\(\frac{1}{2x}+\frac{x}{x+1}=\frac{1}{2}\)
\(\frac{6}{x+1}=\frac{x^2-5x}{x+1}\)


Пример не дробно-рациональных уравнений:

\(\frac{9x^2-1}{3}\) \(=0\)
\(\frac{x}{2}\) \(+8x^2=6\)

Как решаются дробно-рациональные уравнения?

Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным.


Алгоритм решения дробно-рационального уравнения:

    Выпишите и «решите» ОДЗ.

    Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут.

    Запишите уравнение, не раскрывая скобок.

    Решите полученное уравнение.

    Проверьте найденные корни с ОДЗ.

    Запишите в ответ корни, которые прошли проверку в п.7.

Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам.


Пример . Решите дробно-рациональное уравнение \(\frac{x}{x-2} - \frac{7}{x+2}=\frac{8}{x^2-4}\)

Решение:

Ответ: \(3\).


Пример . Найдите корни дробно-рационального уравнения \(=0\)

Решение:

\(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{x^2+7x+10}\) \(=0\)

ОДЗ: \(x+2≠0⇔x≠-2\)
\(x+5≠0 ⇔x≠-5\)
\(x^2+7x+10≠0\)
\(D=49-4 \cdot 10=9\)
\(x_1≠\frac{-7+3}{2}=-2\)
\(x_2≠\frac{-7-3}{2}=-5\)

Записываем и «решаем» ОДЗ.

Раскладываем \(x^2+7x+10\) на по формуле: \(ax^2+bx+c=a(x-x_1)(x-x_2)\).
Благо \(x_1\) и \(x_2\) мы уже нашли.

\(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{(x+2)(x+5)}\) \(=0\)

Очевидно, общий знаменатель дробей: \((x+2)(x+5)\). Умножаем на него всё уравнение.

\(\frac{x(x+2)(x+5)}{x+2} + \frac{(x+1)(x+2)(x+5)}{x+5}-\)
\(-\frac{(7-x)(x+2)(x+5)}{(x+2)(x+5)}\) \(=0\)

Сокращаем дроби

\(x(x+5)+(x+1)(x+2)-7+x=0\)

Раскрываем скобки

\(x^2+5x+x^2+3x+2-7+x=0\)


Приводим подобные слагаемые

\(2x^2+9x-5=0\)


Находим корни уравнения

\(x_1=-5;\) \(x_2=\frac{1}{2}.\)


Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень.

Ответ: \(\frac{1}{2}\).

Решение дробно-рациональных уравнений

Справочное пособие

Рациональные уравнения – это уравнения, в которых и левая, и правая части являются рациональными выражениями.

(Напомним: рациональными выражениями называют целые и дробные выражения без радикалов, включающие действия сложения, вычитания, умножения или деления - например: 6x; (m – n)2; x/3y и т.п.)

Дробно-рациональные уравнения, как правило, приводятся к виду:

Где P (x ) и Q (x ) – многочлены.

Для решения подобных уравнений умножить обе части уравнения на Q(x), что может привести к появлению посторонних корней. Поэтому, при решении дробно-рациональных уравнений необходима проверка найденных корней.

Рациональное уравнение называется целым, или алгебраическим, если в нем нет деления на выражение, содержащее переменную.

Примеры целого рационального уравнения:

5x – 10 = 3(10 – x)

3x
- = 2x – 10
4

Если в рациональном уравнении есть деление на выражение, содержащее переменную (x), то уравнение называется дробно-рациональным.

Пример дробного рационального уравнения:

15
x + - = 5x – 17
x

Дробные рациональные уравнения обычно решаются следующим образом:

1) находят общий знаменатель дробей и умножают на него обе части уравнения;

2) решают получившееся целое уравнение;

3) исключают из его корней те, которые обращают в ноль общий знаменатель дробей.

Примеры решения целых и дробных рациональных уравнений.

Пример 1. Решим целое уравнение

x – 1 2x 5x
-- + -- = --.
2 3 6

Решение:

Находим наименьший общий знаменатель. Это 6. Делим 6 на знаменатель и полученный результат умножаем на числитель каждой дроби. Получим уравнение, равносильное данному:

3(x – 1) + 4x 5х
------ = --
6 6

Поскольку в левой и правой частях одинаковый знаменатель, его можно опустить. Тогда у нас получится более простое уравнение:

3(x – 1) + 4x = 5х.

Решаем его, раскрыв скобки и сведя подобные члены:

3х – 3 + 4х = 5х

3х + 4х – 5х = 3

Пример решен.

Пример 2. Решим дробное рациональное уравнение

x – 3 1 x + 5
-- + - = ---.
x – 5 x x(x – 5)

Находим общий знаменатель. Это x(x – 5). Итак:

х 2 – 3х x – 5 x + 5
--- + --- = ---
x(x – 5) x(x – 5) x(x – 5)

Теперь снова освобождаемся от знаменателя, поскольку он одинаковый для всех выражений. Сводим подобные члены, приравниваем уравнение к нулю и получаем квадратное уравнение:

х 2 – 3x + x – 5 = x + 5

х 2 – 3x + x – 5 – x – 5 = 0

х 2 – 3x – 10 = 0.

Решив квадратное уравнение, найдем его корни: –2 и 5.

Проверим, являются ли эти числа корнями исходного уравнения.

При x = –2 общий знаменатель x(x – 5) не обращается в нуль. Значит, –2 является корнем исходного уравнения.

При x = 5 общий знаменатель обращается в нуль, и два выражения из трех теряют смысл. Значит, число 5 не является корнем исходного уравнения.

Ответ: x = –2

Ещё примеры

Пример 1.

x 1 =6, x 2 = - 2,2.

Ответ:-2,2;6.

Пример 2.