В чем заключается общая цель ядерной безопасности. Безопасность ядерная. Работа ядерно-опасная потенциальная

Ядерная безопасность – важнейшая часть в системе всеобщей и национальной безопасности; связана с состоянием ядерных объектов как военного, так и гражданского назначения, исключающим возникновение ядерных катастроф (и их возможные губительные долговременные и отдаленные радиационные и экологические последствия), наносящих необратимый экологический ущерб состоянию биосферы и экосистем, существованию общества и жизнедеятельности самого человека. Нераспространение ядерного оружия и высоких ядерных технологий, запрет на проведение ядерных испытаний, международный контроль за хранением, переработкой и перемещением ядерных материалов – все это лишь ступени к ядерной безопасности.

В современном мире высокие ядерные технологии как военного, так и гражданского назначения представляют потенциальный источник глобальных катастроф, угрожающих не только национальной, но и международной безопасности.

Ядерные катастрофы в силу необратимых губительных последствий для биосферы, экосистем и самого социума неизбежно ведут к глобальным экологическим катастрофам. По существу, ядерные аварии и катастрофы XX столетия поставили мировое сообщество на грань выживания. Возникла реальная угроза подрыва естественных условий существования человечества.

Однако о философии ядерной безопасности долгое время не могло быть и речи из-за господства доядерных политических и военно-стратегических стереотипов мышления и недооценки новых реалий ядерного века: в частности, специфических свойств ядерного оружия – его способности уничтожить все живое на Земле, вызвать кардинальную перестройку и разрушение биосферы и положить тем самым конец человеческой цивилизации; опасности радиационного эффекта в результате ядерных взрывов, а также негативных экологических последствий использования «мирного» атома непосредственно для самого человека и среды его обитания.

При рассмотрении ядерной безопасности учитывался лишь технический аспект проблемы. В дальнейшем стал приниматься во внимание экологический аспект – глобальное радиоактивное загрязнение биосферы, экосистем и живой природы, а также социальный – разрушительное воздействие на здоровье населения. Необходимо учитывать и возможные долговременные и отдаленные радиационные и экологические последствия.

На протяжении 50 лет существования ядерного оружия методы стратегического противоборства между США и Россией (СССР) претерпели определенную эволюцию. В то же время человечество чрезвычайно долго шло к осознанию той угрозы, которую таит в себе ракетно-ядерное оружие, а также другие виды оружия массового уничтожения.

С самого создания ядерного оружия, которое, как говорил А. Эйнштейн изменило все, кроме нашего образа мышления, как у нас, так и за рубежом (особенно среди политических лидеров, в сфере военной мысли) продолжали относиться к ядерному оружию не как к явлению, полностью перевернувшему все представления о войне, мире и международной безопасности, а как к обычному средству решения политических проблем. Причем при оценках последствий глобального ядерного столкновения считалось (и не только военными теоретиками) возможным пережить Третью мировую войну с применением ракетно-ядерного оружия, ибо при этом предполагалось, что колоссальные разрушения и жертвы не исключат продолжения нормальной жизни для выживших и их потомков.

Когда над планетой реально нависла угроза ядерной войны, вначале лишь единицы, и прежде всего наиболее дальновидные ученые и философы, поняли подлинное значение перехода современной цивилизации в ядерную эпоху. Авторитетнейшие ученые мира – М. Борн, П. Бриджмен, Ф. Жолио-Кюри, Г. Мюллер, Л. Поллинг, С. Юкава, А. Эйнштейн, Л. Инфельд, Дж. Ротблат, Б. Рассел – обратились к мировому сообществу с призывом «научиться мыслить по-новому», чтобы сохранить цивилизацию и жизнь на Земле. Многие из этих выдающихся ученых внесли неоценимый вклад в анализ последствий возможного применения ядерного оружия (и соответственно гонки таких вооружений). В нашей стране против концепции «достижимости победы» в ядерной войне выступали лишь отдельные советские авторы, в первую очередь военные философы, поскольку на высшем военно-политическом уровне более 30 лет монопольно господствовало «доядерное мышление».

В результате из-за мощной силы инерции как на Западе, так и в нашей стране, а также из-за доминирующего положения, которое занимали так называемые ястребы, было отодвинуто почти на три десятилетия исследование возможных последствий ядерной войны и такого ее феномена, как «ядерная зима», хотя на возможность подобного явления указывал еще в 1955 г. американский ученый Дж. Арнотт. Он ссылался при этом на работы американского метеоролога У.Дж. Хэмфриза, который высказал прогноз о вероятности охлаждения земной поверхности в результате взрывов водородных бомб, напоминающих в известной мере извержения вулканов.

Фактически лишь в 1980-е гг., после того как стали широко известны результаты исследований американских (Г. Вудвелла, К. Сагана, П. Крутцена, П.Эрлиха и др.) и отечественных ученых (В.В. Александрова, Е.П. Велихова, Н.Н. Моисеева, В.В. Гинсбурга, С.П. Капицы, А.С. Павлова и др.) о возможных катастрофических последствиях ядерной войны для судеб цивилизации и жизни на Земле и выработки концепции «ядерной ночи» и «ядерной зимы» было, наконец, научно доказано, что ядерное оружие практически не может быть ни орудием политики, ни самой войны, так как оно угрожает всеобщим истреблением.

Однако окончание «холодной войны» и противостояния США и СССР не привело к торжеству провозглашенного ООН принципа неприменения силы в международных делах, к одновременному роспуску военно-политических союзов, в частности НАТО, созданного, как декларировалось, для парирования «советской военной угрозы». В настоящее время наличие у США и России ядерного оружия предопределяет сохранение концепции ядерного сдерживания. Как известно, с начала 90-х гг. США и Россия не рассматривают друг друга в качестве противников и развивают отношения партнерства и дружбы. Следует учитывать, однако, что в новой геополитической ситуации официальная ядерная стратегия США не исключает возможность применения ядерного оружия. В новой «Военной доктрине» и «Концепции национальной безопасности Российской Федерации» также предусматривается, в случае военной агрессии, применение Россией всех имеющихся в ее распоряжении средств, включая ядерное оружие.

Любой механизм взаимного сдерживания будет успешно действовать при соблюдении баланса интересов, взаимовыгодного характера сотрудничества, уважения и доверия. Понятно также, что развертывание дестабилизирующих систем в зоне противоракетной обороны вызовет в мире гонку вооружений и продолжение испытаний ядерного оружия с целью его обновления. А это представляет серьезную угрозу глобальной ядерной безопасности.

Глобальное радиационное загрязнение биосферы началось именно в результате испытаний ядерного оружия. С 1941 по 1991 г. десятью странами было произведено 1945 ядерных взрывов. В США 958 взрывов проведено на двух полигонах, расположенных вдали от основных городов своей страны. В СССР 715 ядерных взрывов проведено на размещенных по всей стране 52 полигонах. Из них: 132 – на Новой Земле, 26 – в бассейне Волги, 13 подземных взрывов – в Красноярском крае, 12 – в Якутии (ныне республика Саха). Как известно, и сегодня ряд стран продолжает проводить ядерные испытания. Что касается отдаленных последствий ядерных взрывов, то фактически с тех пор как было изобретено ядерное оружие и начались его испытания, показатели систематически занижались. Долгое время никто не связывал значительное возрастание частоты опухолевых заболеваний в 80-е гг. во многих странах мира с проводившимися в 50-е гг. испытаниями ядерного оружия (как, впрочем, и сейчас с долговременными и отдаленными последствиями чернобыльской катастрофы). Это объясняется тем, что никем из исследователей в должной степени не учитывался, во-первых, синергизм в комбинированном действии на организм человека излучений и других потенциально опасных канцерогенных факторов окружающей среды, а во-вторых, то обстоятельство, что латентный период в развитии опухолевых заболеваний человека может составлять 15–20–30 и даже более лет.

В 1980-е гг. был сделан вывод о том, что для живой природы и человека губительны все последствия ядерных взрывов, безвредных среди них нет и быть не может. Несмотря на это, испытания ядерного оружия с целью его модернизации и обновления продолжаются. При этом военные специалисты продолжают считать, что подземные ядерные взрывы совершенно безопасны как для окружающей среды, так и для человека. С точки зрения экологии это не соответствует действительности. До сих пор не учитывается, что в результате проведения 2500 подземных взрывов в 90 различных регионах планеты наблюдается техногенная дестабилизация недр, в результате чего существенно нарушается ход энергетических процессов в биосфере, что затрагивает и человеческую популяцию.

Московский Договор 1963 г. запрещал ядерные испытания в трех средах: атмосфере, космическом пространстве и под водой. Последующими этапами в обеспечении глобальной ядерной безопасности явились: Договор 1974 г. об ограничении подземных испытаний ядерного оружия мощностью не более 150 кт и Договор 1976 г. о мирных ядерных взрывах; Вашингтонская встреча в 1987 г. на высшем уровне между СССР и США, в ходе которой была достигнута договоренность о проведении эксперимента в области совместного контроля за двумя ядерными испытаниями в каждой стране с использованием специалистов и оборудования другой страны для замера мощности взрыва. В дальнейшем эта встреча была оформлена Соглашением о проведении Совместного эксперимента по контролю 31 мая 1988 г. в Женеве. Однако, несмотря на обилие международных договоров и конвенций, система обеспечения ядерной безопасности в мире остается далеко не завершенной. В настоящее время проблема запрещения ядерных испытаний является особым элементом процесса всеобщего и полного разоружения.

Договор о Всеобъемлющем запрещении ядерных испытаний (ДВЗЯИ) на 50-й сессии Генеральной Ассамблеи ООН был подписан 150 государствами. Этот документ был ратифицирован в 21 стране. Для вступления в силу ДВЗЯИ необходима его ратификация в 44 странах, которые либо принадлежат к ядерному клубу, либо располагают высокими технологиями для самостоятельного изготовления военного атома.

В современной обстановке насущно необходимы новые прорывы как на отдельных участках ограничения и контроля, так и по широкому масштабному фронту – в контексте мер всеобщего и полного разоружения, направленных на обеспечение глобальной ядерной безопасности.

Подрыв ядерной безопасности в современном мире идет по следующим направлениям.

Во-первых, само наличие громадных арсеналов ядерного оружия представляет угрозу безопасности, поскольку продолжает таить в себе глобальную опасность возникновения ядерного конфликта. Эксперты утверждают, что, несмотря на ведущееся сокращение ядерных вооружений, даже к 2003 г. мы будем иметь больше ядерного оружия, чем его было в мире 25 лет тому назад. Уже сейчас к пяти ядерным державам прибавилось еще три – Израиль, Индия, Пакистан. К 2007 г. около 40 стран могут быть отнесены к разряду «пороговых», то есть способных создать ядерное оружие. Возникает и новая опасность – «устойчивой» гонки вооружений в странах с неустойчивыми режимами. В XXI в. значительные ядерные арсеналы сохранятся у США, Великобритании, Франции, России, а также у Китая. Все это свидетельствует о том, что вряд ли в обозримом будущем может стать в практическую плоскость вопрос о полной ликвидации ядерного оружия. А значит, и о безъядерной планете.

Во-вторых, остается по-прежнему высокой вероятность случайного, несанкционированного возникновения ядерного конфликта вследствие самопроизвольного срабатывания техники по техническим или психопатологическим причинам. Осознание этой угрозы явилось одним из важнейших обстоятельств, побудивших США и Россию пойти на взаимное снижение уровней противостояния. Между Россией и США, Россией и Великобританией, Россией и Францией заключены соглашения об уменьшении опасности возникновения ядерной войны. Существуют линии «горячей связи» для экстренного информирования и согласования взаимных действий в случае появления ядерных конфликтов или других чрезвычайных ситуаций.

В-третьих, источником подрыва ядерной безопасности могут быть также «ядерный шантаж» и «ядерный терроризм», вполне возможные в любой стране, обладающей ядерным оружием или ядерными материалами. Причем опасность представляют как действия различных террористических групп, так и отдельных лиц: политических лидеров или «рядовых» ядерных террористов, готовых во имя достижения своих целей развязать ядерный конфликт, невзирая на его катастрофические последствия.

В-четвертых, угрозу ядерной безопасности представляет и экспорт ядерных материалов для производства ядерного оружия. Особое внимание в связи с этим стоит обратить на проблему плутония, контроль за перемещением которого поставлен в целом качественно, так как государства осознают опасность несанкционированного доступа к нему с точки зрения режима ядерного нераспространения. К сожалению, система учета и контроля по использованию радиоизотопов и радиоактивных источников в ряде стран еще только создается. Развитие ядерной энергетики на современном этапе также позволяет получить расщепляющиеся материалы, которые в дальнейшем могут быть использованы в целом ряде новых государств (особенно ускоряющих освоение высоких ядерных технологий) для производства ядерного оружия. В частности, распространение АЭС на быстрых нейтронах, где в качестве топлива используется плутоний, может создать почву для ядерного терроризма, шантажа и, возможно, распространения ядерного оружия.

В связи с этим становится очевидной необходимость разработки Международной Конвенции о борьбе с незаконным оборотом ядерных материалов и предотвращении ядерного терроризма, которые должны стать приоритетной задачей всех государств, всего мирового сообщества.

Для обеспечения глобальной ядерной безопасности необходима закладка основ международной безопасности для XXI столетия на безъядерном фундаменте. Такой подход предполагает прежде всего кардинальную переоценку значимости ядерного оружия (которое в современных условиях в силу беспрецедентной экологической опасности не может быть ни гарантом безопасности в мире, ни даже орудием возмездия) и реальное ядерное разоружение, так как именно распространение ядерного оружия способно оказать ныне наиболее разрушительное воздействие на ситуацию в области международной безопасности и стратегической стабильности в современном мире. Во избежание грядущих глобальных ядерных катастроф и ради выживания человечества необходимо общее комплексное снижение ядерной опасности не только путем прекращения ядерных испытаний, нераспространения ядерного оружия и высоких ядерных технологий, полного ядерного разоружения и уничтожения всех видов ядерного оружия, но и путем постепенного отказа от АЭС.

В настоящее время существует фактически три подхода к использованию атомной энергии в мирных целях: в ряде стран (Швеция, Норвегия и др.) реализуется программа консервирования и демонтажа существующих АЭС; в других (Австрия, США, Бельгия и др.) – полностью отказались от строительства АЭС, так как они не рассматриваются более как перспективные; в отдельных странах (Франция, Россия) – сохраняется ориентация на развитие атомной энергетики (при этом основное внимание уделяется разработке мер по обеспечению ядерной безопасности).

Долгие годы наши отечественные специалисты почти однозначно утверждали, что единственно надежным видом энергии, с помощью которой можно «утолить энергетический голод», является ядерная энергия, так как она якобы самая дешевая, экологически чистая. А ее ресурсы практически неисчерпаемы. Господствовала точка зрения, согласно которой с радиоактивным загрязнением окружающей среды не может быть связан практически значимый канцерогенный риск. Доказывалось, что АЭС – абсолютно безопасны: не оказывают никакого отрицательного влияния на природную среду и здоровье населения, в том числе на уровень онкологических заболеваний, не говоря уже о генетических эффектах.

Однако весь цикл строительства, функционирования и демонтажа АЭС, включая радиоактивные отходы, представляет серьезную угрозу ядерной безопасности.

Во-первых, риск подрыва ядерной безопасности (не только локальной, но и глобальной) связан с самим процессом получения энергии. Несмотря на то что ядерное производство постоянно контролируется на всех его этапах, тем не менее, происходит определенная утечка радиоактивных загрязнений в окружающую среду, в результате чего население подвергается непрерывному облучению малыми дозами, что ведет к возрастанию онкологических и генетических заболеваний.

Во-вторых, важно учитывать, что срок службы любой АЭС примерно около 30 лет. Первоначально считалось, что радиация в зоне реактора полностью затухнет через 5–100 лет. Однако эти представления оказались лишь иллюзией. Предполагается, что в начале XXI в. по причине устаревания будут остановлены первые крупные АЭС (стоимость этих операций равняется 50–100% затрат на их сооружение). К настоящему времени ни одна страна в мире не подготовлена к этому должным образом.

В-третьих, не менее сложной представляется проблема обеспечения экологически безопасного хранения радиоактивных отходов. До сих пор практически не решен один из важнейших с точки зрения экологии вопросов: как и где хранить радиоактивные отходы ядерных электростанций, чтобы обеспечить экологическую безопасность общества и среды обитания людей. А без конструктивного решения данного вопроса вполне естественно нет и полной уверенности в том, что преимущества ядерной энергетики стоят того громадного риска для человечества и биосферы, который связан с ее развитием.

Наконец, самую большую угрозу ядерной безопасности представляет возможность аварии на АЭС. Ныне общепризнано, что абсолютной гарантии от катастрофических аварий на АЭС не существует. К настоящему времени зафиксировано уже более 150 аварий на АЭС с утечкой радиоактивности. Если мировое сообщество будет иметь не 450 реакторов, как сейчас, а свыше 1000 реакторов, то каждые 10 лет с большой вероятностью следует ожидать тяжелую аварию. Начнет работать статистика.

Для предотвращения грядущих ядерных катастроф на АЭС требуется глобальное обеспечение ядерной безопасности, что возможно лишь путем эффективного международного контроля. В современных условиях массовой приватизации ядерного энергетического сектора в мире, когда значительно ослабляется контроль государства над ним, резко повышается роль МАГАТЭ, особенно возрастает ее контрольно-регулирующая функция.

Громадный риск, связанный с развитием ядерной энергетики во всем мире, указывает на необходимость определенного пересмотра «атомной идеологии» и разработки и освоения принципиально новых технологий получения энергии из альтернативных источников, которые в XXI в. будут играть все большую роль.

Лит.: Кузин А.М. Чем угрожают человечеству ядерные взрывы. М., 1959; Бернал Дж. Мир без войны. М., 1960; Кроссер П. Диалектика военной техники и ее последствия в ядерный век. М., 1975; Бабаев Н.С., Демин В.Ф., Ильин Л.А. Ядерная энергетика, человек и окружающая среда. М., 1981; Чазов Е.И., Ильин Л.А., Гуськова А.К. Ядерная война: медико-биологические последствия. Точка зрения советских ученых-медиков. М., 1984; Легасов В.Л., Феоктистов Л.П., Кузьмин И.И. Ядерная энергетика и международная безопасность // Природа. 1985. №6; Климатические и биологические последствия ядерной войны. М., 1986; II Всесоюзная конференция ученых по проблемам мира и предотвращения ядерной войны // Вестник АН СССР. 1986. № 12. С.3–89; Буланов А.И., Крылова И.А. Соотношение политики и ядерной войны // Вопросы философии. 1988. № 5. С. 110–125; Макнамара Р. Путем ошибок к катастрофе. Опыт выживания в первом веке ядерной эры. М., 1988; Последствия ядерной войны. Воздействие на экологию и сельское хозяйство. М., 1988; Крылов А.И. Глобальная опасность и роль нового мышления в ее преодолении. М., 1989; Белов М.В. Диалектика против субъективистских взглядов на войну в ядерно-космический век // Новое мышление и военная политика. М., 1989; Александров В.В., Моисеев Н.Н. Ядерный конфликт глазами климатологов и математиков // Вестник АН СССР. 1989. № 11; Соотношение политики и войны в век ракетно-ядерного оружия (Противоборство двух концепций в советской литературе по проблеме соотношения политики и ядерной войны. 1960–1980 гг.). М., 1990; Ядерная энциклопедия. М., 1996; Моисеев Н.Н. Ядерная зима // Ядерная энциклопедия. 1996. С. 144–148; Ярошинская А.А. Философия ядерной безопасности. М., 1996; Крылова И.А. Проблема ядерной безопасности в современном мире // Вестник Межд. Каф. ЮНЕСКО по соц. и гуманитар. наукам при ИСПИ РАН. № 2. Культура. Мир. Безопасность. М., 1998. С. 35–43; Ядерная безопасность: социогуманитарные структуры. М., 1998; Ксенофонтов В.Н. Соотношение политики и ядерной безопасности: эволюция взглядов // Армия и общество. 1999. № 3. С. 66–73; Крылова И.А. Ядерная угроза в XXI столетии // Пути к безопасности. 2001. Выпуск 1/21; Крылова И.А. Проблема безопасности России в контексте глобализации М., 2001.

Защитная оболочка является прочноплотным и герметичным барьером, охватывающим паропроизводительную установку и основные системы, важные для безопасности. Конструкция защитной оболочки должна обеспечивать такую ее герметичность, чтобы утечка газов была бы не выше 1% в сутки.

Защитное ограждение должно обеспечивать нормальные условия для обслуживания эксплуатационным персоналом оборудования и систем установки.

Ядерная безопасность

Ядерная безопасность (ЯБ) - это свойство предотвращать ядерные аварии, связанные с повреждением ядерного топлива или переоблучением персонала. ЯБ достигается за счет исключения возможностей тяжелых ядерных аварий, например исключением разгонов реактора на мгновенных нейтронах.

Неразгоняемость реактора на мгновенных нейтронах обеспечивается в частности тем,что значения коэффициентов реактивности по удельному обьему теплоносителя, по температуре теплоносителя, по температуре топлива и по мощности реактора не должны быть положительными во всем диапазоне изменений параметров реактора при нормальной эксплуатации, нарушениях нормальной эксплутации и проектных авариях.

При этом активная зона должна быть такой, чтобы любые изменения реактивности при нормальной эксплуатации, нарушениях нормальной эсплуатации и проектных авариях не приводили к нарушению соответствующих пределов повреждения твэлов.

Пределом безопасной эксплуатации, определяющим допустимый уровень активности теплоносителя первого контура по количеству и величине дефектов твэлов следует считать 0,1% твэлов с дефектами типа газовой неплотности и 0,01% твэлов с прямым контактом теплоносителя и ядерного топлива.

Максимальный проектный предел повреждения твэлов соответствует непревышению следующих предельных параметров:

· температура оболочек твэлов - не более 1200 градусов С,

· локальная глубина окисления оболочек твэлов - не более 18 % от первоначальной толщины стенки,

· доля прореагировавшего циркония - не более 1% его массы в оболочках,

· импульсное предельное удельное энерговыделение твэлов, т.е. энергия, выделяющаяся за короткий промежуток времени в единице массы ядерного топлива при быстром вводе реактивности, - не более 200 ккал/кг (для окисного топлива), при котором не происходит существенного разрушения, фрагментации твэла.

Радиационная безопасность

Радиационная безопасность есть система мер по защите персонала, населения и окружающей среды от воздействия проникающих излучений, направленная на обеспечение отсутствие неблагоприятных эффектов или вреда здоровью от облучения ионизирующими частицами людей, живых существ и элементов природы.

В документе "Санитарные правила проектирования и эксплуатации атомных станций" , СП АС-88 установлены следующие дозовые пределы:

· для персонала АС в зоне строгого режима - 5 бэр/год,

· для персонала в зоне свободного режима - 0,5 бэр/год,

· для населения,проживающего вблизи АС - 25 мбэр/год.

Отметим, что при нормальной эксплуатации АС дозовые квоты населения не должны превышать:

· за счет газоаэрозольных выбросов АС - 20 мбэр/год,

причем за счет радионуклидов благородных газов 10-12 мбэр/год,

за счет радиоизотопов иода - 6-8 мбэр/год и

· за счет жидких отходов - 5 мбэр/год.

При любой аварии АС облучение населения на границе санитарно-защитной зоны не должно превышать 10 бэр.

Аварийные выбросы и сбросы радиоактивных веществ должны быть столь малыми, чтобы исключалась необходимость эвакуации больщих групп населения при самых тяжелых авариях.

Следует сказать, что в международных стандартах радиационной безопасности рекомендуемые дозовые нагрузки примерно в 2,5 раза ниже. C учетом этого в настоящее время готовятся новые национальные нормативные документы,в которых предельные дозовые нагрузки будут также существенно снижены.

В федеральном законе РФ "О радиационной безопасности населения" , вступившем в силу в январе 1996 г. , определены допустимые пределы доз, которые будут введены в действие с января 2000 г. Так, для населения средняя годовая эффект ивная доза составляет 0,001 зиверта (за период жизни, ~70 лет - 0,07 зиверта), для работников АС - средняя годовая эффективная доза равна 0,02 зиверта (за период трудовой деятельности, ~50 лет - 1 зиверт).

Экологическая безопасность

Под экологической безопасностью АС понимают ее свойства не оказывать на окружающую среду таких воздействий за счет выбросов или сбросов радиоактивных веществ, тепла, химических веществ, которые могли бы причинить вред для обитателей окружающей среды, флоре и фауне в природных экосистемах, нарушали бы биологическое равновесии, изменяли бы климатические условия и другие условия, необходимые для сохранения и обогащения природы.

Атомные станции не должны оказывать чрезмерных постоянно действующих или аварийных тепловых, химических, радиационных и других воздействий на природные экосистемы, под влиянием которых происходило бы деградирование экосистем во времени, накапливались и закреплялись неблагоприятные изменения состояний динамического равновесия. Важно, чтобы все изменения в экосистемах были бы обратимы, чтобы имелись достаточные запасы устойчивости до предельных, необратимых возмущений. Нормирование антропогенных нагрузок на экосистемы и предназначено для того, чтобы предотвращать все неблагоприятные изменения в них, а в лучшем варианте направлять эти изменения в благоприятную сторону.

Чтобы избежать травмирования экосистем должны быть определены и нормативно зафиксированы некоторые предельные поступления вредных веществ в организмы особей, другие пределы воздействий, которые могли бы вызвать неприемлемые последствия на уровне популяций.

Экологические емкости экосистем для различных вредных веществ следует определять по интенсивности поступления этих веществ, при которых хотя бы в одном из компонентов биоценоза возникнет критическая ситуация, т.е. когда накопление этих веществ приблизится к опасному пределу, превышение которого грозит деградацией экосистемы. В значениях предельных концентраций химических веществ, в том числе радионуклидов, конечно, должны учитываться и синергетические эффекты.

Нормативы безопасности

Атомное законодательство

В странах с развитой атомной промышленностью, ядерной энергетикой, существует система государственного регулирования общественных отношений при использовании атомной энергии, проблем обеспечения безопасности атомных электростанций, радиационной защиты населения, защиты окружающей среды. Эта система "атомного права" постоянно совершенствуется, дополняется новыми законоположениями и нормативами. Однако смена основополагающих, принципиальных актов происходит медленно и не всегда поспевает за потребностями жизни. Кроме того в законодательстве подчас отсутствуют многие важные или принципиальные документы. Например, Атомный Закон РФ , который должен быть фундаментом атомного права под названием "Закон об использовании атомной энергии" вступил в действие лишь в ноябре 1995 г. . Другой важный закон - "О защите окружающей среды" еще не стал реальным инструментом технической политики.

1.2 Понятие и содержание ядерной безопасности

Понятие «ядерная безопасность», являясь по своему характеру и сущности достаточно емким и многогранным, имеет в виду этого весьма сложную природу. Прежде всего, необходимо подчеркнуть, что ядерная безопасность - понятие комплексное, своего рода «система», состоящая из нескольких структурных подразделений (элементов системы).

В качестве основных аспектов ядерной безопасности можно выделить три наиболее главных: 1) Недопущение применения накопленного в мире ядерного оружия. 2) Обеспечение безопасности - с одной стороны, и предотвращение использования в военных целях ядерных материалов, высвобождающихся в результате демонтажа ядерного оружия при осуществлении разоружения, - с другой. 3) Обеспечение безопасности при мирном использовании атомной энергии.

Обеспечение безопасности при мирном использовании атомной энергии направлено на выполнение двуединой задачи.

Во-первых, недопущение переключения ядерных материалов, используемых в мирной атомной деятельности, на военные цели.

Во-вторых, обеспечение безопасности при обращении с ядерными материалами с целью предотвращения радиоактивного заражения населения планеты, атмосферы, вод Мирового океана, почв, растительною и животного мира, то есть всей биосферы Земли; недопущение возникновения ситуаций, приводящих к неконтролируемой ядерной реакции и разгону ядерного реактора; ликвидация последствий ядерных аварий и т.д.

Исключительно важным связующим элементом обеспечения безопасного использования атомной энергии и укрепления режима нераспространения ядерного оружия является задача недопущения незаконного обращения с расщепляющимися материалами, высвобождающимися в результате демонтажа ядерного оружия.

Проблема обеспечения ядерной безопасности возникает при осуществлении любой атомной деятельности (эксплуатация атомных электростанций; перевозка радиоактивных материалов; использование судов, оборудованных ядерными энергетическими установками; хранение и утилизация радиоактивных отходов (РАО) и отработавшего радиоактивного топлива и др.). Разумеется, такая проблема остро стоит и при испытаниях ядерного оружия.

Экологический портрет ядерных технологий СССР складывался из двух основных составляющих: 1. Экологические проблемы, явившиеся следствием испытаний ядерного оружия. 2. Экологические последствия аварий и инцидентов в процессе использования «мирного атома».

Понятие ядерной безопасности при мирном использовании атомной энергии можно рассматривать в широком и узком смыслах. Широкое толкование данного понятия состоит в том, что ядерная безопасность является составным элементом всеобъемлющей международной безопасности. Понимание ядерной безопасности в узком смысле предполагает необходимость ее обеспечения в различных сферах мирного использования ядерной энергии.

Важнейшими задачами в деле безопасного использования атомной энергии являются: решение проблем захоронения и утилизации высокорадиоактивных отходов и отработавшего ядерного топлива, а также обращения с ядерными материалами, высвобождающимися в результате демонтажа ядерного оружия; предотвращение террористических актов в отношении ядерных материалов, ядерных объектов и установок путем создания и обеспечения эффективного функционирования систем учета, контроля и физической защиты; предотвращение радиоактивного загрязнения биосферы земли посредством заключения соответствующих международных конвенций и договоров.

Атомная отрасль отличается от всех остальных двумя известными особенностями: высокой концентрацией энергии и длительностью существования продуктов распада, которые могут оказывать глобальное воздействие в случае ядерных аварий. Это накладывает специальные требования к ядерной безопасности реакторных установок.

Существует общепринятое утверждение, что «абсолютной безопасности не бывает». Оно постулируется и не является предметом доказательств так же, как ни в научной, ни в нормативной документации не определено понятие «абсолютной безопасности». Но речь идёт не об абсолютной безопасности, а о ядерной - свойстве реакторной установки с определённой вероятностью предотвращать возникновение ядерной аварии. Так что вероятность аварии является важнейшей, принципиальной, неотъемлемой характеристикой понятия «ядерная безопасность».

К сожалению, практически все положения, принципы культуры безопасности не только не нашли отражение в идеологии технического регулирования в СССР, но и вступали с ними в определенные противоречия. Так, в литературе встречаются описания попыток советских учёных создать реакторную установку, в которой ядерные аварии в принципе невозможны. Но такое их стремление возникло из их собственного, внутреннего понимания логики развития атомной энергетики. Советское государство такую задачу никогда не ставило ни перед военной отраслью, ни перед наукой, что было вызвано недооценкой и пренебрежением возможными негативными эффектами известных физических явлений.

Эксплуатирующей организации, в признанном цивилизованным миром понимании, несущей полную ответственность за безопасность, в СССР не существовало. В стране отсутствовало, включая высший государственный уровень, то, что сегодня во всем мире признано как «культура безопасности». Важность возникших опасений для безопасности была недооценена, и меры, которые могли предотвратить, например, Чернобыльскую катастрофу, реализованы не были.

СССР, безусловно, достиг значительных успехов в развитии ядерной науки и техники, особенно в военной области. Однако эти успехи чрезмерно политизировались. В то же время скрывались недостатки и ошибки, приводившие к крупным авариям на ядерных установках как гражданского (Ленинградская АЭС, 1975 г., и т.д.), так и военного (Челябинск, 1957 г., бухта Чажма, 1985 г. и т.д.) назначения. В стране отсутствовал должный государственный контроль деятельности ядерных ведомств (до 1984 г. фактически такого контроля не существовало). Все это привело к тому, что в ядерной энергетике утвердились настроения непогрешимости, суть которых наиболее точно отражает формула: «советские ядерные реакторы - лучшие в мире».

Это также красноречиво проявилось в реакции на аварию, происшедшую на американской АЭС «Три Майл Айлэнд» в 1979 г., когда руководители ядерной отрасли СССР заявили, что «при социализме такая авария невозможна». Политический престиж государства доминировал и подавлял основное условие мирного использования ядерной энергии - обеспечение ее безопасности. В начале 1980-х гг., после упомянутой аварии, в СССР начали проявляться тенденции критической переоценки безопасности АЭС. Однако объективные оценки безопасности отечественных реакторов были заблокированы авторитетами и руководителями советской ядерной науки и техники. Роль независимой экспертизы, в первую очередь со стороны государственных органов регулирования ядерной безопасности, была практически нулевой. Сильный и независимый орган ядерного регулирования, который является основой государственного режима ядерной безопасности, до Чернобыльской аварии 1986 г. в СССР практически не существовал.

До сегодняшнего дня продолжает жить миф о том, что ядерная наука и техника СССР имели неограниченные финансовые и материальные ресурсы. Это справедливо, если говорить о том, что было предназначено для военных целей. В действительности ядерная энергетика испытывала хроническую нехватку средств, в первую очередь на прикладные исследования в обоснование безопасности и надежности, экспериментальной отработки оборудования и т.д. Достаточно сказать, что затраты на научно-исследовательские работы в обоснование безопасности АЭС в СССР были более чем в 10 раз ниже, чем в США, но это стало известно только после падения «железного занавеса». Имели место отсутствие средств на создание экспериментальной стендовой базы, закупку современной вычислительной техники, на проведение исследований и разработку технологии обращения с радиоактивными отходами и отработавшим ядерным топливом, создание качественной дозиметрической аппаратуры, создание тренажеров. Можно совершенно обоснованно заявить, что экономические основы обеспечения ядерной безопасности в СССР не были решены, и не играет роли причина такого положения - непонимание проблемы или отсутствие средств. Важно то, что безопасность ядерной энергетики не была обеспечена экономически.

Итак, государственная политика СССР как в области ядерного оружия, так и в области использования мирного атома не основывалась на приоритете безопасности. Исключение возможности ядерной аварии на АЭС никогда не ставилось государством перед учёными и конструкторами в качестве первоочередной задачи. Создатели атомного оружия также имели совсем другие приоритеты. Конечно, проблемы безопасности рассматривались, но не были приоритетными. Такой подход закономерно привел к тяжелым экологическим последствиям.

Деятельность КГБ в 70-80 годах

Реорганизация коснулась и правоохранительных органов. В марте 1954 г. в результате обособления из МВД СССР был образован Комитет государственной безопасности (КГБ) при Совете Министров СССР...

Игорь Васильевич Курчатов и развитие в России ядерной физики

Курчатов Игорь Васильевич (12.01.1903-07.02.1960) - физик, академик (1943), научный руководитель атомной проблемы в СССР, основатель и первый директор Института атомной энергии (1943 - 1960), член Президиума АН СССР (1946 - 1960), член ВКП (б) с 1948г....

История органов госбезопасности на Кубани

Новая эпоха в развитии органов государственной безопасности Кубани, как и всей страны, началась с девяностых годов ХХ века. 16 мая 1991 года Верховный Совет СССР принял закон...

Международное положение в Европе накануне Второй мировой войны (1933–1939 гг.)

Новые реальности внешней реальности Н.С. Хрущёва

С наступлением нового года хрущёвской «оттепели» угроза мировой войны отступила -- особенно это было характерно для конца 1950-х гг, увенчавшегося визитом Хрущёва в США...

Прежде чем мы перейдем к изучению советских органов госбезопасности в годы Великой Отечественной войны мы сначала рассмотрим историю возникновения этого термина, а также его суть и значение. Как известно...

Органы государственной безопасности в СССР

безопасность орган государственный военный Как уже говорилось, что на протяжении всей Великой Отечественной войны происходила реорганизация органов государственной безопасности...

Пограничная безопасность СССР в период 1945–1991 гг.

В соответствии с существовавшей после Второй мировой войны геополитической ситуацией в мире функции системы обеспечения безопасности в Советском Союзе сводились преимущественно к обороноспособности государства Купцов В.П...

Причины массовых репрессий

Чистки в органах ВЧК--ОГПУ--НКВД проводились задолго до 1937 года. Ещё в начале 1920-х годов из «органов» был убран ряд «излишне активных» деятелей красного террора. В ходе борьбы с левой оппозицией были репрессированы некоторые чекисты...

Реакция мирового сообщества на американскую антитеррористическую операцию в Ираке

В октябре 2002 года США предоставили постоянным члена Совета Безопасности Организации Объединенных Наций план резолюции по Иракскому вопросу, он был подготовлен вместе с Великобританией...

Советско-финляндские отношения второй половины 20-х - начала 30-х годов

С победой советской власти СССР стал восприниматься Финляндией как потенциальный агрессор. Сотрудничество окраинных государств не состоялось; интерес западных стран к Финляндии был не велик. Лишь Германия...

  • Общие положения обеспечения безопасности атомных станций ОПБ-88/97 (ПНАЭ Г-01-011-97) .
  • Правила ядерной безопасности реакторных установок атомных станций ПБЯ РУ АС-89.
  • Правила устройства и безопасной эксплуатации исполнительных механизмов органов воздействия на реактивность (ПНАЭ Г-7-013-89).
  • Правила безопасности при транспортировании радиоактивных материалов (НП-053-04)
  • Правила ядерной безопасности при хранении и транспортировке ядерно-опасных делящихся материалов (ПБЯ-06-09-90).
  • Правила ядерной безопасности при транспортировании отработавшего ядерного топлива (ПБЯ-06-08-77)
  • Правила безопасности при хранении и транспортировке ядерного топлива на объектах атомной энергетики (ПБ-ЯТ-ХТ-90, ПНАЭ Г-14-029-91)
  • Основные положения подготовки, рассмотрения и принятия решений по изменениям проектной, конструкторской, технологической и эксплуатационной документации, влияющим на обеспечение ядерной и радиационной безопасности (РД-03-19-94)
  • Водно-химический режим атомных станций. Основные требования безопасности (РБ Г-12-43-97)
  • Требования к управляющим системам, важным для безопасности атомных станций (НП-026-01).
  • Правила устройства и эксплуатации локализующих систем безопасности атомных станций (НП-010-98).
  • Общие положения по устройству и эксплуатации систем аварийного электроснабжения атомных станций (ПНАЭ Г-9-026-90)
  • Типовое содержание плана мероприятий по защите персонала в случае аварии на атомной станции (НП-015-2000).
  • Основные правила учёта и контроля ядерных материалов (НП-030-01)
  • Требования к составу комплекта и содержанию документов, обосновывающих обеспечение ядерной и радиационной безопасности ядерной установки, пункта хранения, радиационного источника и/или заявленной деятельности (для атомных станций) (РД-04-27-2000) (Утратили силу с 1 сентября 2006 г. - Приказ Ростехнадзора от 18.05.2006 N 432)
  • Положение о выдаче разрешений Федерального надзора по ядерной и радиационной безопасности на право ведения работ в области использования атомной энергии работникам атомных станций (РД-04-29-99)

Международные соглашения

Напишите отзыв о статье "Ядерная безопасность"

Примечания

Литература

Отрывок, характеризующий Ядерная безопасность

– Запрягать надо, пора запрягать, ваше сиятельство! Ваше сиятельство, – повторил какой то голос, – запрягать надо, пора запрягать…
Это был голос берейтора, будившего Пьера. Солнце било прямо в лицо Пьера. Он взглянул на грязный постоялый двор, в середине которого у колодца солдаты поили худых лошадей, из которого в ворота выезжали подводы. Пьер с отвращением отвернулся и, закрыв глаза, поспешно повалился опять на сиденье коляски. «Нет, я не хочу этого, не хочу этого видеть и понимать, я хочу понять то, что открывалось мне во время сна. Еще одна секунда, и я все понял бы. Да что же мне делать? Сопрягать, но как сопрягать всё?» И Пьер с ужасом почувствовал, что все значение того, что он видел и думал во сне, было разрушено.
Берейтор, кучер и дворник рассказывали Пьеру, что приезжал офицер с известием, что французы подвинулись под Можайск и что наши уходят.
Пьер встал и, велев закладывать и догонять себя, пошел пешком через город.
Войска выходили и оставляли около десяти тысяч раненых. Раненые эти виднелись в дворах и в окнах домов и толпились на улицах. На улицах около телег, которые должны были увозить раненых, слышны были крики, ругательства и удары. Пьер отдал догнавшую его коляску знакомому раненому генералу и с ним вместе поехал до Москвы. Доро гой Пьер узнал про смерть своего шурина и про смерть князя Андрея.

Х
30 го числа Пьер вернулся в Москву. Почти у заставы ему встретился адъютант графа Растопчина.
– А мы вас везде ищем, – сказал адъютант. – Графу вас непременно нужно видеть. Он просит вас сейчас же приехать к нему по очень важному делу.
Пьер, не заезжая домой, взял извозчика и поехал к главнокомандующему.
Граф Растопчин только в это утро приехал в город с своей загородной дачи в Сокольниках. Прихожая и приемная в доме графа были полны чиновников, явившихся по требованию его или за приказаниями. Васильчиков и Платов уже виделись с графом и объяснили ему, что защищать Москву невозможно и что она будет сдана. Известия эти хотя и скрывались от жителей, но чиновники, начальники различных управлений знали, что Москва будет в руках неприятеля, так же, как и знал это граф Растопчин; и все они, чтобы сложить с себя ответственность, пришли к главнокомандующему с вопросами, как им поступать с вверенными им частями.
В то время как Пьер входил в приемную, курьер, приезжавший из армии, выходил от графа.
Курьер безнадежно махнул рукой на вопросы, с которыми обратились к нему, и прошел через залу.
Дожидаясь в приемной, Пьер усталыми глазами оглядывал различных, старых и молодых, военных и статских, важных и неважных чиновников, бывших в комнате. Все казались недовольными и беспокойными. Пьер подошел к одной группе чиновников, в которой один был его знакомый. Поздоровавшись с Пьером, они продолжали свой разговор.
– Как выслать да опять вернуть, беды не будет; а в таком положении ни за что нельзя отвечать.
– Да ведь вот, он пишет, – говорил другой, указывая на печатную бумагу, которую он держал в руке.
– Это другое дело. Для народа это нужно, – сказал первый.
– Что это? – спросил Пьер.
– А вот новая афиша.
Пьер взял ее в руки и стал читать:
«Светлейший князь, чтобы скорей соединиться с войсками, которые идут к нему, перешел Можайск и стал на крепком месте, где неприятель не вдруг на него пойдет. К нему отправлено отсюда сорок восемь пушек с снарядами, и светлейший говорит, что Москву до последней капли крови защищать будет и готов хоть в улицах драться. Вы, братцы, не смотрите на то, что присутственные места закрыли: дела прибрать надобно, а мы своим судом с злодеем разберемся! Когда до чего дойдет, мне надобно молодцов и городских и деревенских. Я клич кликну дня за два, а теперь не надо, я и молчу. Хорошо с топором, недурно с рогатиной, а всего лучше вилы тройчатки: француз не тяжеле снопа ржаного. Завтра, после обеда, я поднимаю Иверскую в Екатерининскую гошпиталь, к раненым. Там воду освятим: они скорее выздоровеют; и я теперь здоров: у меня болел глаз, а теперь смотрю в оба».

Термины и определения ядерные материалы (ЯМ) - материалы, содержащие делящие ся вещества, или способные их воспроизвести (например, уран 238); радиоактивные вещества (РВ) - вещества, испускающие ио низирующее излучение (исключая ЯМ); радиоактивные отходы (РАО) - ЯМ + РВ, которые не предпо лагают в дальнейшем использовать (например, после радиохими ческой переработки облученного топлива).

Термины и определения исходные ЯМ урановые и ториевые руды, природный уран и торий, обедненный уран (уран с пониженным содержанием 235 U); специальные ЯМ обогащенный уран (уран с повышенным со держанием 235 U), плутоний и 233 U; трансурановые элементы (Np, Am, Cm, Bk, Cf);

Термины и определения Специальный неядерный материал - материалы, не содержащие или не способные воспроизвести ядерные материалы, но которые могут быть использованы в устройствах, предназначенных для осуществления взрывного выделения внутриядерной энергии (ядерного взрыва). Делящиеся вещества (нуклиды) – вещества способные всту пать в ядерную реакцию деления при облучении их нейтронами: природные изотопы урана и тория; искусственные изотопы плутония; изотопы трансурановых элементов (Np, Am, Cm, Bk, Cf); искусственный изотоп 233 U (продукт захвата нейтронов 232 Th).

Термины и определения Ядерное топливо это ЯМ, содержащий нуклиды, которые делятся при взаимодействии с нейтронами. Ядерное топливо материалы, служащие для получения энергии в ядерном реакторе. Обычно ядерное топливо представляет собой смесь веществ, содержащих: делящиеся ядра и ядра, способные в результате бомбардировки нейтронами образовывать делящиеся ядра (не существующие в природе).

Термины и определения Оружие массового поражения (ОМП) обычно включает в себя ядерное, биологическое и химическое оружие. Ядерное оружие массового поражения взрывного действия, основанное на использовании внутриядерной энергии, которая выделяется при цепных реакциях деления тяжелых ядер некоторых изотопов урана и плутония или при термоядерных реакциях синтеза легких ядер изотопов водорода (дейтерия и трития) в более тяжелые, например изотопы гелия. Ядерное оружие включает ядерные боеприпасы (боевые части ракет и торпед, авиационные и глубинные бомбы, артиллерийские снаряды и мины, снаряженные ядерными зарядными устройствами), средства управления и доставки их до цели.

Термины и определения Критическая масса минимальная масса делящегося вещества, необходимая для начала самоподдерживающейся цепной реакции деления.

Международное сотруд ничество в сфере обеспечения радиационной защиты и ядерной без опасности развивается по следующим направлениям принятие в рамках международных организаций правил безопас ности и радиационной защиты; обеспечение безопасной эксплуатации АЭС и оказание помощи в случае чрезвычайного ядерной аварии; обмен информацией об отказах и неисправностях ядерно энерге тического оборудования и проведение совместных исследований и разработок в области ядерной безопасности.

Международная ядерная безопасность 1979 год Конвенция о физической защите ядерного материала 1985 год Договор о безъядерной зоне южной части Тихого океана и Протоколы к нему 1986 год Конвенция о помощи в случае ядерной или радиационной аварийной ситуации Конвенция об оперативном оповещении о ядерной аварии 1990 год Соглашение о проведении международных исследований последствий аварии на Чернобыльской атомной электростанции в научном центре «Припять»

Международная ядерная безопасность 1992 год Принципы, касающиеся использования ядерных источников энергии в космическом пространстве Соглашение между КНДР и МАГАТЭ о применении гарантий в связи с Договором о нераспространении ядерного оружия 1994 год Конвенция о ядерной безопасности Вена, 17 июня 1994 года. Конвенция вступила в силу для России 24. 10. 1996. 1995 год Договор о зоне, свободной от ядерного оружия, в Юго Восточной Азии [Бангкокский договор] Договор о зоне, свободной от ядерного оружия, в Африке [Пелиндабский договор]

Международная ядерная безопасность 1997 год Венская конвенция о гражданской ответственности за ядерный ущерб 1997 года Конвенция о дополнительном возмещении за ядерный ущерб Объединенная конвенция о безопасности обращения с отработавшим топливом и о безопасности обращения с радиоактивными отходами 1998 год Типовой дополнительный протокол к соглашению(ям) между государством(ами) и Международным агентством по атомной энергии о применении гарантий 2004 год Кодекс поведения по обеспечению безопасности и сохранности радиоактивных источников

Договор об Антарктике Подписан в Вашингтоне 1 декабря 1959 года Договор об Антарктике, вступил в силу в 1961 году. Договор состоит из преамбулы и 14 статей. Его главная цель – обеспечить использование Антарктики в интересах всего человечества. В Договоре предусматривается свобода научных исследований и поощряется международное сотрудничество. На январь 2010 года в число участников договора входят 46 государств, 28 из которых являются консультативными сторонами.

Договор Тлателолко Договор о запрещении ядерного оружия в Латинской Америке 1967 году (Договор Тлателолко) – о запрещении ядерного оружия в этом регионе. Договор запрещает испытание, применение, изготовление, производство или приобретение любым способом, а также получение, хранение, установку, размещение и любую форму владения любым ядерным оружием странам Латинской Америки и Карибского моря. Договор был открыт к подписанию 14 февраля 1967 года в Мехико. Договор вступил в силу для каждого государства в индивидуальные сроки. Государством депозитарием является Мексика. В настоящее время участниками Договора являются 33 государства.

Договор Раротонга Договор о безъядерной зоне в южной части Тихого океана. Зона включает Австралию, Новую Зеландию, Папуа, Новую Гвинею и ряд мелких островных государств этого региона. Договор запрещает изготовление или приобретение другими способами любого ядерного взрывного устройства, а также владение и контроль над таким устройством со стороны участников где либо в пределах или за пределами зоны. Он также запрещает захоронение радиоактивных материалов в море, владение ядерными взрывными устройствами и испытание их в мирных целях. Договор разрешает участникам делать исключения для ядерного оружия, которое может находиться на борту иностранных судов, заходящих в их порты. Договор был открыт к подписанию 6 августа 1985 года. Вступил в силу 11 декабря 1986 года. В настоящее время в состав участников Договора входят 13 государств. Протоколы к Договору Раротонга подписаны всеми пятью официальными ядерными государствами.

Бангкокский договор Договор о создании зоны, свободной от ядерного оружия, в Юго Восточной Азии. В соответствии с Договором ни одно из государств участников не производит, не владеет и не контролирует ядерное оружие, не испытывает и не использует ядерное оружие как внутри, так и вне зоны, свободной от ядерного оружия, определяемой Договором, не содействует приобретению ядерного оружия каким либо государством, не предоставляет территорию для размещения ядерного оружия, предотвращает испытания ядерного оружия. Договор открыт к подписанию 15 декабря 1995 года и вступил в силу 28 марта 1997 года. К нему присоединилось 10 государств, в 9 из них прошла процедура его ратификации. Депозитарий Договора – правительство Таиланда.

Договор Пелиндаба Договор о создании в Африке зоны, свободной от ядерного оружия Договор был открыт к подписанию 11 апреля 1996 года в Каире, где и был подписан 43 государствами. В настоящее время его участниками являются 53 государства. Договор не вступил в силу, так как не был ратифицирован необходимым числом участников. Депозитарий Договора – Генеральный секретарь Организации Африканского единства. Протокол к Договору был подписан 5 официальными ядерными государствами.

Договор о зоне, свободной от ядерного оружия, в Центральной Азии Безъядерная зона в Центральной Азии обладает рядом уникальных черт, отличающих ее от других аналогичных зон в мире: ни одна из существующих зон, свободных от ядерного оружия, не имеет среди стран участниц государство, обладавшее ранее арсеналом ядерного оружия; только ЦАЗСЯО представляет собой территорию, полностью окруженную сушей и полностью находящуюся в Северном полушарии, и только ЦАЗ СЯО непосредственно граничит с ядерными государствами; впервые договор о ЗСЯО включает обязательства, по которым страны члены договора должны полностью подчиняться Договору о всеобъемлющем запрещении ядерных испытаний и Дополнительному протоколу МАГАТЭ; договор о ЦАЗСЯО призывает поддержать реабилитационные мероприятия в области охраны окружающей среды, пострадавшей в ходе реализации ядерных программ во время холодной войны.

ЯДЕРНАЯ БЕЗОПАСНОСТЬ «Правила ядерной безопасности реакторных установок атомных станций» НП 082 07 Введены в действие с 1 июня 2008 г.

Перечень сокращений АЗ аварийная защита АС атомная станция ACT атомная станция теплоснабжения БН реактор на быстрых нейтронах с натриевым теплоносителем БПУ (БЩУ) блочный пункт (щит) управления ВВЭР водо водяной энергетический реактор КГО контроль герметичности оболочки ООБ отчет по обоснованию безопасности ПЗ предупредительная защита РБМК реактор большой мощности канальный РПУ (РЩУ) резервный пункт (щит) управления РУ реакторная установка СВБ система важная для безопасности СУЗ система управления и защиты ТВС тепловыделяющая сборка твэл тепловыделяющий элемент УСБ управляющие системы безопасности УСНЭ управляющие системы нормальной эксплуатации ЭГП 6 энергетическая графитовая петельная реакторная установка

Термины и определения Аварийная защита: функция безопасности, заключающаяся в быстром переводе реактора в подкритическое состояние и в поддержании его в подкритическом состоянии; комплекс систем безопасности, выполняющий функцию АЗ. Активная зона часть реактора, в которой размещены ядерное топливо, замедлитель, поглотитель, теплоноситель, средства воздействия на реактивность и элементы конструкций, предназначенные для осуществления управляемой цепной ядерной реакции деления и передачи энергии теплоносителю. Группа рабочих органов СУЗ один или несколько рабочих органов СУЗ, объединенных по управлению в целях одновременного совместного перемещения и воздействия на реактивность.

Термины и определения Диагностика функция контроля, целью которой является определение состояния работоспособности неработоспособности) или исправности (неисправности)диагностируемого объекта. Извлечение средств воздействия на реактивность такое перемещение или изменение состояния средств воздействия на реактивность, которое приводит к вводу положительной реактивности (введение средств воздействия на реактивность приводит к вводу отрицательной реактивности). Исполнительный механизм СУЗ устройство, состоящее из привода, рабочих органов и соединительных элементов и предназначенное для изменения реактивности реактора. Канал контроля совокупность датчиков, линий связи, средств обработки сигналов и (или) представления параметров, предназначенных для обеспечения контроля в заданном проектом объеме.

Термины и определения Комплект аппаратуры АЗ аппаратура системы управления и защиты, выполняющая в заданном проектом РУ объеме функции контроля и управления АЗ. Максимальный запас реактивности реактивность, которая может реализовываться в реакторе при удалении из активной зоны всех средств воздействия на реактивность и извлекаемых поглотителей для момента кампании и состояния реактора с максимальным значением эффективного коэффициента размножения. Максимальный проектный предел повреждения твэлов допустимые значения параметров и характеристик твэлов в условиях проектных аварий, превышение которых может приводить к разрушению твэлов.

Термины и определения Перегрузка активной зоны (перегрузка) ядерно опасные работы на РУ по загрузке, извлечению и перемещению ТВС (твэлов), средств воздействия на реактивность и других элементов, влияющих на реактивность, в целях их ремонта, замены и демонтажа. Повреждение твэла нарушение хотя бы одного из установленных для твэлов проектных пределов повреждения. Предупредительная защита функция, выполняемая управляющей системой нормальной эксплуатации блока АС, для предотвращения срабатывания аварийной защиты и (или)нарушений пределов и условий безопасной эксплуатации. Привод СУЗ устройство, предназначенное для изменения положения механического рабочего органа СУЗ и его удержания в фиксированном положении.

Термины и определения Рабочий орган АЗ средство воздействия на реактивность, используемое в АЗ. Рабочий орган СУЗ средство воздействия на реактивность, используемое в СУЗ. Разгерметизация твэла повреждение твэла с нарушением целостности оболочки твэла типа газовой не плотности или прямого контакта ядерного топлива с теплоносителем. Разрушение твэла нарушение целостности конструкции твэла, в результате которой твэл утрачивает геометрию, обеспечивающую его проектное охлаждение.

Термины и определения Реакторная установка комплекс систем и элементов АС, предназначенный для преобразования ядерной энергии в тепловую, включающий реактор и непосредственно связанные с ним системы, необходимые для его нормальной эксплуатации, аварийного охлаждения, аварийной защиты и поддержания в безопасном состоянии при условии выполнения требуемых вспомогательных и обеспечивающих функций другими системами АС. Границы РУ устанавливаются для каждой АС в проекте. Сигнал АЗ сигнал, формируемый в комплекте аппаратуры АЗ с целью инициировать срабатывание рабочих органов АЗ и поступающий в средства регистрации, а также на БПУ и РПУ для оповещения персонала. Сигнал ПЗ сигнал, формируемый и регистрируемый системами контроля и управления для инициирования функций ПЗ и оповещения персонала о возможных нарушениях нормальной эксплуатации.

Термины и определения Система остановки реактора система, предназначенная для перевода реактора в подкритическое состояние и поддержания его в подкритическом состоянии с помощью средств воздействия на реактивность. Система управления и защиты совокупность средств технического, программного и информационного обеспечения, предназначенных для обеспечения безопасного протекания цепной ядерной реакции деления. Система управления и защиты система, важная для безопасности, совмещающая функции нормальной эксплуатации и безопасности и состоящая из элементов управляющих систем нормальной эксплуатации, защитных, управляющих и обеспечивающих систем безопасности.

Термины и определения Средства воздействия на реактивность технические средства, реализуемые в виде твердых, жидких или газообразных поглотителей (замедлителей, отражателей), изменением положения или состояния которых в активной зоне или отражателе обеспечивается изменение реактивности активной зоны реактора. Тепловыделяющая сборка машиностроительное изделие, содержащее ядерные материалы и предназначенное для получения тепловой энергии в ядерном реакторе за счет осуществления контролируемой ядерной реакции. Тепловыделяющий элемент (твэл) отдельная сборочная единица, содержащая ядерные материалы и предназначенная для получения тепловой энергии в ядерном реакторе за счет осуществления контролируемой ядерной реакции деления и (или) для накопления нуклидов.

Термины и определения Тяжелое повреждение активной зоны реактора запроектная авария с повреждением твэлов выше максимального проектного предела, при которой может быть превышен предельно допустимый аварийный выброс радиоактивных веществ в окружающую среду. Указатель положения рабочего органа СУЗ устройство для определения положения рабочего органа СУЗ в активной зоне реактора. Эквивалентная степень окисления оболочки отнесенная к начальной толщине оболочки суммарная толщина эквивалентного слоя, который прореагировал бы с водяным паром в предположении, что весь местно поглощенный кислород пошел на образование стехиометрического диоксида циркония Zr. О 2. В случае разгерметизации оболочки учитывается окисление как наружной, так и внутренней поверхности оболочки.

с помощью ограничения массы (зона 1). с помощью ограничения концентрации (зона 2). с помощью ограничения массы и концентрации (зона 3). с помощью ограничения массы и степени замедления (зона 4).

обеспечения ядерной безопасности: ограничение размеров и формы (в этом случае употребляют термины: безопасные размеры, безопасная геометрия). с помощью ограничения размеров и концентрации. с помощью ограничения размеров и замедления.

Коэффициенты запаса выбирают в два этапа. Во первых, (первый этап), значение Кэф аппаратов не должно превышать 0, 95. Во вторых, (второй этап), безопасный или допустимый параметр должен быть уменьшён в К раз: для критической массы – в 2, 1 раза, критического диаметра цилиндра или критической толщины пластины – в 1, 1 раза, критического объёма – в 1, 3 раза, критической концентрации – в 1, 3 раза.

Выбор способа обеспечения ядерной безопасности Делящийс Обогащение U 90 Обогащение U 5 % Pu я % материал Критичес Безопас кий ный Масса Ut, кг 0, 87 0, 40 37 18 0, 510 0, 250 Объём, л 6, 1 5, 0 35 27 5, 5 4, 2 Диаметр цилиндра, см 14 12, 7 31 26 13 11 Толщина пластины, см 4, 9 4, 0 15 12, 1 4, 5 3, 4

Обеспечения ядерной безопасности с помощью ограничения массы Хотя этот способ не накладывает ограничений на размер ёмкости (форма ёмкости фиксирована), необходимо контролировать концентрацию делящегося вещества или степень замедления в среде. От нас требуется не нарушать административных мер безопасности. Необходимо контролировать массу входящего и выходящего делящегося материала, чтобы в любой момент времени масса не превышала безопасного или допустимого значения.

При таком способе обеспечения ядерной безопасности должно быть принято во внимание: тщательные меры должны быть приняты при изготовлении этих емкостей для того, чтобы избежать превышения размеров, вследствие повышения давления, температурных изменений и т. д. ; должны быть изучены различные аварийные ситуации, связанные с утечкой растворов из емкостей безопасной геометрии. Предосторожности должны быть приняты, чтобы избежать утечки растворов (проверка сварных швов, тесты на герметичность). Должны быть изучены пути, по которым раствор может попасть в ёмкость опасной геометрии (например, емкости с реагентами, вакуумные системы, охлаждающие или нагревательные системы), и эти ситуации должны быть исключены;

часто необходимо передавать раствор из ёмкости безопасной геометрии в ёмкость опасной геометрии. При этом необходимо ограничивать массу или концентрацию делящегося материала в емкостях безопасной геометрии; транспортные ёмкости должны быть безопасной геометрии. При этом должно быть ограничено их число и использованы дистанционирующие элементы, исключающие их сближение.

Этот способ может быть использован, если растворы чистые и отсутствует риск кристаллизации, полимеризации, испарения и концентрирования экстрагентом (например, трибутилфосфатом). Должно быть исключено смешивание кислотных растворов со щелочными растворами, т. к. при этом образуются осадки. Аналогично, необходимо принимать меры для избежания накопления осадков, например, периодическое промывание. Необходимо иметь аппаратуру для контроля осадков внутри сосудов. Во всех случаях концентрацию необходимо оценивать, используя один или два метода.

Этот метод обеспечения ядерной безопасности применим только для «сухих» систем. В частности, этот метод используется на заводах по изготовлению ТВС, где имеются операции с делящимися материалами в виде оксида с малым содержанием воды (замедлителя). Он применяется также на заводах по обогащению урана, использующих газодиффузионные методы. UF 6 реагирует с влажным воздухом с образованием UO 2 F 2, поэтому должны быть приняты меры для исключения этого.

риск случайного попадания замедлителя в результате внешних или внутренних событий: Риск внешних событий. Сами здания являются первичным барьером против внешних событий и должны быть построены в области, которая не допускает затопление или достаточно защищена от затопления. Риск затопления должен быть не выше 10 3 1/год. Здание должно быть достаточно защищено от торнадо, ураганов, смерчей и т. д. Риск внутренних событий. Прохождение труб с водой через опасную зону должно быть исключено. Электрические нагреватели предпочтительнее, чем водяные или паровые нагреватели, охлаждение воздухом предпочтительнее, чем охлаждение водой. Если невозможно ограничить прохождение труб с водой через помещение, то их лучше помещать под землей, чем на стенах, полу или потолке. При тушении пожаров запрещается использовать водородосодержащие продукты, в частности, воду или пену. В случае если сосуды, в которые недопустимо попадание водородосодержащих материалов, имеют водные системы охлаждения, то иногда в систему охлаждения добавляется поглотитель нейтронов.

Этот метод используется в сочетании с обеспечением ядерной безопасности с помощью ограничения массы, геометрии или концентрации. Если используется поглотитель в растворимой форме (гомогенный поглотитель), то он не должен кристаллизироваться и выпадать в осадок и концентрация поглотителя должна контролироваться двумя различными методами. Должны быть приняты меры против введения растворов (жидкостей) без поглотителей, которые могут привести к разбавлению поглотителей. Если поглотитель находится в твёрдой форме (гетерогенный поглотитель) необходимо провести контроль количества и качества поглотителя перед его установкой. Поглотитель должен быть защищён от механических повреждений. Например, поглотитель помещается внутрь стальной оболочки. Необходимо предусмотреть периодический контроль за сохранностью поглотителей.

Аварии с возникновением критичности. Общие сведения. Наибольшее влияние на кинетику протекания СЦР оказывают скорость ввода реактивности (ρ = Кэф – 1/Кэф, где Кэф – эффективный коэффициент размножения нейтронов), механизм самогашения, начальный фон нейтронов, время их жизни в системе. Механизм самогашения – это свойство системы уменьшать свою реактивность.

Ниже перечислены существенные особенности этих 22 аварий 21 авария произошла с делящимися веществами в виде растворов или суспензий. Одна авария произошла с изделиями в виде металлических слитков. Ни одной аварии не произошло с порошками. 18 аварий имели место при ручных операциях в отсутствие биологической защиты. Имели место 9 смертельных исходов. У троих выживших после аварий были ампутированы конечности. Не было ни одной аварии при транспортировке. Не было ни одной аварии при хранении материалов. Не было повреждений оборудования. В результате только одной из аварий имело место поддающееся измерению загрязнение продуктами деления (слегка превышающее естественные уровни) за пределами производственных площадок. В результате только одной из аварий произошло не особенно большое (значительно ниже допустимой нормы годового облучения персонала) облучение людей, не работающих на предприятии.