Произношение математических символов. Как пишется знак больше и знак меньше

Выберите рубрику Книги Математика Физика Контроль и управления доступом Пожарная безопасность Полезное Поставщики оборудования Cредства измерений (КИП) Измерение влажности — поставщики в РФ. Измерение давления. Измерение расходов. Расходомеры. Измерение температуры Измерение уровней. Уровнемеры. Бестраншейные технологии Канализационные системы. Поставщики насосов в РФ. Ремонт насосов. Трубопроводная арматура. Затворы поворотные (дисковые затворы). Обратные клапаны. Регулирующая арматура. Фильтры сетчатые, грязевики, магнито-механические фильтры. Шаровые краны. Трубы и элементы трубопроводов. Уплотнения резьб, фланцев и т.д. Электродвигатели, электроприводы… Руководство Алфавиты, номиналы, единицы, коды… Алфавиты, в т.ч. греческий и латинский. Символы. Коды. Альфа, бета, гамма, дельта, эпсилон… Номиналы электрических сетей. Перевод единиц измерения Децибел. Сон. Фон. Единицы измерения чего? Единицы измерения давления и вакуума. Перевод единиц измерения давления и вакуума. Единицы измерения длины. Перевод единиц измерения длины (линейного размера, расстояний). Единицы измерения объема. Перевод единиц измерения объема. Единицы измерения плотности. Перевод единиц измерения плотности. Единицы измерения площади. Перевод единиц измерения площади. Единицы измерения твердости. Перевод единиц измерения твердости. Единицы измерения температуры. Перевод единиц температур в шкалах Кельвина (Kelvin) / Цельсия (Celsius) / Фаренгейта (Fahrenheit) / Ранкина (Rankine) / Делисле (Delisle) / Ньютона (Newton) / Реамюрa Единицы измерения углов ("угловых размеров"). Перевод единиц измерения угловой скорости и углового ускорения. Стандартные ошибки измерений Газы различные как рабочие среды. Азот N2 (хладагент R728) Аммиак (холодильный агент R717). Антифризы. Водород H^2 (хладагент R702) Водяной пар. Воздух (Атмосфера) Газ природный — натуральный газ. Биогаз — канализационный газ. Сжиженный газ. ШФЛУ. LNG. Пропан-бутан. Кислород O2 (хладагент R732) Масла и смазки Метан CH4 (хладагент R50) Свойства воды. Угарный газ CO. Монооксид углерода. Углекислый газ CO2. (Холодильный агент R744). Хлор Cl2 Хлороводород HCl, он же — Cоляная кислота. Холодильные агенты (хладагенты). Хладагент (холодильный агент) R11 — Фтортрихлорметан (CFCI3) Хладагент (Холодильный агент) R12 — Дифтордихлорметан (CF2CCl2) Хладагент (Холодильный агент) R125 — Пентафторэтан (CF2HCF3). Хладагент (Холодильный агент) R134а — 1,1,1,2-Тетрафторэтан (CF3CFH2). Хладагент (Холодильный агент) R22 — Дифторхлорметан (CF2ClH) Хладагент (Холодильный агент) R32 — Дифторметан (CH2F2). Хладагент (Холодильный агент) R407С — R-32 (23%)/ R-125 (25%)/ R-134a (52%)/ Проценты по массе. другие Материалы — тепловые свойства Абразивы — зернистость, мелкость, шлифовальное оборудование. Грунты, земля, песок и другие породы. Показатели разрыхления, усадки и плотности грунтов и пород. Усадка и разрыхление, нагрузки. Углы откоса, отвала. Высоты уступов, отвалов. Древесина. Пиломатериалы. Лесоматериалы. Бревна. Дрова… Керамика. Клеи и клеевые соединения Лед и снег (водяной лед) Металлы Алюминий и сплавы алюминия Медь, бронзы и латуни Бронза Латунь Медь (и классификация медных сплавов) Никель и сплавы Соответствие марок сплавов Стали и сплавы Cправочные таблицы весов металлопроката и труб. +/-5% Вес трубы. Вес металла. Механические свойства сталей. Чугун Минералы. Асбест. Продукты питания и пищевое сырье. Свойства и пр. Ссылка на другой раздел проекта. Резины, пластики, эластомеры, полимеры. Подробное описание Эластомеров PU, ТPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE модифицированный), Сопротивление материалов. Сопромат. Строительные материалы. Физические, механические и теплотехнические свойства. Бетон. Бетонный раствор. Раствор. Строительная арматура. Стальная и прочая. Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость. Уплотнительные материалы — герметики соединений. PTFE (фторопласт-4) и производные материалы. Лента ФУМ. Анаэробные клеи Герметики невысыхающие (незастывающие). Герметики силиконовые (кремнийорганические). Графит, асбест, парониты и производные материалы Паронит. Терморасширенный графит (ТРГ, ТМГ), композиции. Свойства. Применение. Производство. Лен сантехнический Уплотнители резиновых эластомеров Утеплители и теплоизоляционные материалы. (ссылка на раздел проекта) Инженерные приемы и понятия Взрывозащита. Защита от воздействия окружающей среды. Коррозия. Климатические исполнения (Таблицы совместимости материалов) Классы давления, температуры, герметичности Падение (потеря) давления. — Инженерное понятие. Противопожарная защита. Пожары. Теория автоматического управления (регулирования). ТАУ Математический справочник Арифметическая, Геометрическая прогрессии и суммы некоторых числовых рядов. Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д. Площади неправильных фигур, объемы неправильных тел. Средняя величина сигнала. Формулы и способы расчета площади. Графики. Построение графиков. Чтение графиков. Интегральное и дифференциальное исчисление. Табличные производные и интегралы. Таблица производных. Таблица интегралов. Таблица первообразных. Найти производную. Найти интеграл. Диффуры. Комплексные числа. Мнимая единица. Линейная алгебра. (Вектора, матрицы) Математика для самых маленьких. Детский сад — 7 класс. Математическая логика. Решение уравнений. Квадратные и биквадратные уравнения. Формулы. Методы. Решение дифференциальных уравнений Примеры решений обыкновенных дифференциальных уравнений порядка выше первого. Примеры решений простейших = решаемых аналитически обыкновенных дифференциальных уравнений первого порядка. Системы координат. Прямоугольная декартова, полярная, цилиндрическая и сферическая. Двухмерные и трехмерные. Системы счисления. Числа и цифры (действительные, комплексные, ….). Таблицы систем счисления. Степенные ряды Тейлора, Маклорена (=Макларена) и периодический ряд Фурье. Разложение функций в ряды. Таблицы логарифмов и основные формулы Таблицы численных значений Таблицы Брадиса. Теория вероятностей и статистика Тригонометрические функции, формулы и графики. sin, cos, tg, ctg….Значения тригонометрических функций. Формулы приведения тригонометрических функций. Тригонометрические тождества. Численные методы Оборудование — стандарты, размеры Бытовая техника, домашнее оборудование. Водосточные и водосливные системы. Емкости, баки, резервуары, танки. КИПиА Контрольно-измерительные приборы и автоматика. Измерение температуры. Конвейеры, ленточные транспортеры. Контейнеры (ссылка) Крепеж. Лабораторное оборудование. Насосы и насосные станции Насосы для жидкостей и пульп. Инженерный жаргон. Словарик. Просеивание. Фильтрация. Сепарация частиц через сетки и сита. Прочность примерная веревок, тросов, шнуров, канатов из различных пластиков. Резинотехнические изделия. Сочленения и присоединения. Диаметры условные, номинальные, Ду, DN, NPS и NB. Метрические и дюймовые диаметры. SDR. Шпонки и шпоночные пазы. Стандарты коммуникации. Сигналы в системах автоматизации (КИПиА) Аналоговые входные и выходные сигналы приборов, датчиков, расходомеров и устройств автоматизации. Интерфейсы подключения. Протоколы связи (коммуникации) Телефонная связь. Трубопроводная арматура. Краны, клапаны, задвижки…. Строительные длины. Фланцы и резьбы. Стандарты. Присоединительные размеры. Резьбы. Обозначения, размеры, использование, типы… (справочная ссылка) Соединения ("гигиенические", "асептические") трубопроводов в пищевой, молочной и фармацевтической промышленности. Трубы, трубопроводы. Диаметры труб и другие характеристики. Выбор диаметра трубопровода. Скорости потока. Расходы. Прочность. Таблицы выбора, Падение давления. Трубы медные. Диаметры труб и другие характеристики. Трубы поливинилхлоридные (ПВХ). Диаметры труб и другие характеристики. Трубы полиэтиленовые. Диаметры труб и другие характеристики. Трубы полиэтиленовые ПНД. Диаметры труб и другие характеристики. Трубы стальные (в т.ч. нержавеющие). Диаметры труб и другие характеристики. Труба стальная. Труба нержавеющая. Трубы из нержавеющей стали. Диаметры труб и другие характеристики. Труба нержавеющая. Трубы из углеродистой стали. Диаметры труб и другие характеристики. Труба стальная. Фитинги. Фланцы по ГОСТ, DIN (EN 1092-1) и ANSI (ASME). Соединение фланцев. Фланцевые соединения. Фланцевое соединение. Элементы трубопроводов. Электрические лампы Электрические разъемы и провода (кабели) Электродвигатели. Электромоторы. Электрокоммутационные устройства. (Ссылка на раздел) Стандарты личной жизни инженеров География для инженеров. Расстояния, маршруты, карты….. Инженеры в быту. Семья, дети, отдых, одежда и жилье. Детям инженеров. Инженеры в офисах. Инженеры и другие люди. Социализация инженеров. Курьезы. Отдыхающие инженеры. Это нас потрясло. Инженеры и еда. Рецепты, полезности. Трюки для ресторанов. Международная торговля для инженеров. Учимся думать барыжным образом. Транспорт и путешествия. Личные автомобили, велосипеды…. Физика и химия человека. Экономика для инженеров. Бормотология финансистов — человеческим языком. Технологические понятия и чертежи Бумага писчая, чертежная, офисная и конверты. Стандартные размеры фотографий. Вентиляция и кондиционирование. Водоснабжение и канализация Горячее водоснабжение (ГВС). Питьевое водоснабжение Сточная вода. Холодное водоснабжение Гальваническая промышленность Охлаждение Паровые линии / системы. Конденсатные линии / системы. Паропроводы. Конденсатопроводы. Пищевая промышленность Поставка природного газа Сварочные металлы Символы и обозначения оборудования на чертежах и схемах. Условные графические изображения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения, согласно ANSI/ASHRAE Standard 134-2005. Стерилизация оборудования и материалов Теплоснабжение Электронная промышленность Электроснабжение Физический справочник Алфавиты. Принятые обозначения. Основные физические константы. Влажность абсолютная, относительная и удельная. Влажность воздуха. Психрометрические таблицы. Диаграммы Рамзина. Время Вязкость, Число Рейнольдса (Re). Единицы измерения вязкости. Газы. Свойства газов. Индивидуальные газовые постоянные. Давление и Вакуум Вакуум Длина, расстояние, линейный размер Звук. Ультразвук. Коэффициенты звукопоглощения (ссылка на другой раздел) Климат. Климатические данные. Природные данные. СНиП 23-01-99. Строительная климатология. (Статистика климатических данных) СНИП 23-01-99 .Таблица 3 — Средняя месячная и годовая температура воздуха, °С. Бывший СССР. СНИП 23-01-99 Таблица 1. Климатические параметры холодного периода года. РФ. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. Бывший СССР. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. РФ. СНИП 23-01-99 Таблица 3. Средняя месячная и годовая температура воздуха, °С. РФ. СНиП 23-01-99. Таблица 5а* — Среднее месячное и годовое парциальное давление водяного пара, гПа = 10^2 Па. РФ. СНиП 23-01-99. Таблица 1. Климатические параметры холодного времени года. Бывший СССР. Плотности. Веса. Удельный вес. Насыпная плотность. Поверхностное натяжение. Растворимость. Растворимость газов и твердых веществ. Свет и цвет. Коэффициенты отражения, поглощения и преломления Цветовой алфавит:) — Обозначения (кодировки) цвета (цветов). Свойства криогенных материалов и сред. Таблицы. Коэффициенты трения для различных материалов. Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… дополнительная информация см.: Коэффициенты (показатели) адиабаты. Конвекционный и полный теплообмен. Коэффициенты теплового линейного расширения, теплового объемного расширения. Температуры, кипения, плавления, прочие… Перевод единиц измерения температуры. Воспламеняемость. Температура размягчения. Температуры кипения Температуры плавления Теплопроводность. Коэффициенты теплопроводности. Термодинамика. Удельная теплота парообразования (конденсации). Энтальпия парообразования. Удельная теплота сгорания (теплотворная способность). Потребность в кислороде. Электрические и магнитные величины Дипольные моменты электрические. Диэлектрическая проницаемость. Электрическая постоянная. Длины электромагнитных волн (справочник другого раздела) Напряженности магнитного поля Понятия и формулы для электричества и магнетизма. Электростатика. Пьезоэлектрические модули. Электрическая прочность материалов Электрический ток Электрическое сопротивление и проводимость. Электронные потенциалы Химический справочник "Химический алфавит (словарь)" — названия, сокращения, приставки, обозначения веществ и соединений. Водные растворы и смеси для обработки металлов. Водные растворы для нанесения и удаления металлических покрытий Водные растворы для очистки от нагара (асфальтосмолистого нагара, нагара двигателей внутреннего сгорания…) Водные растворы для пассивирования. Водные растворы для травления — удаления окислов с поверхности Водные растворы для фосфатирования Водные растворы и смеси для химического оксидирования и окрашивания металлов. Водные растворы и смеси для химического полирования Обезжиривающие водные растворы и органические растворители Водородный показатель pH. Таблицы показателей pH. Горение и взрывы. Окисление и восстановление. Классы, категории, обозначения опасности (токсичности) химических веществ Периодическая система химических элементов Д.И.Менделеева. Таблица Менделеева. Плотность органических растворителей (г/см3)в зависимости от температуры. 0-100 °С. Свойства растворов. Константы диссоциации, кислотности, основности. Растворимость. Смеси. Термические константы веществ. Энтальпии. Энтропии. Энергии Гиббса… (ссылка на химический справочник проекта) Электротехника Регуляторы Системы гарантированного и бесперебойного электроснабжения. Системы диспетчеризации и управления Структурированные кабельные системы Центры обработки данных

Математические обозначения («язык математики ») - сложная графическая система обозначений, служащая для изложения абстрактных математических идей и суждений в человеко-читаемой форме. Составляет (по своей сложности и разнообразию) значительную долю неречевых знаковых систем , применяемых человечеством. В данной статье описывается общепринятая международная система обозначений, хотя различные культуры прошлого имели свои собственные, и некоторые из них даже имеют ограниченное применение до сих пор.

Отметим, что математические обозначения, как правило, применяются совместно с письменной формой какого-то из естественных языков .

Помимо фундаментальной и прикладной математики, математические обозначения имеют широкое применение в физике , а также (в неполном своём объёме) в инженерии , информатике , экономике , да и вообще во всех областях человеческой деятельности, где применяются математические модели . Различия между собственно математическим и прикладным стилем обозначений будут оговорены по ходу текста.

Энциклопедичный YouTube

    1 / 5

    ✪ Знак / в математике

    ✪ Математика 3 класс. Таблица разрядов многозначных чисел

    ✪ Множества в математике

    ✪ Математика 19. Математические забавы - Шишкина школа

    Субтитры

    Привет! Это видео не о математике, скорее об этимологии и семиотике. Но уверен, вам понравится. Поехали! Вы вот в курсе, что поиск решения кубических уравнений в общем виде занял у математиков несколько столетий? Это отчасти почему? Потому что не было ясных символов для ясных мыслей, то ли дело наше время. Символов столько, что и запутаться можно. Но нас с вами не проведешь, давайте разбираться. Вот это - заглавная перевернутая буква А. Это на самом деле английская буква, числится первой в словах "all" и "any". По-русски этот символ, в зависимости от контекста, может читаться так: для любого, всякий, каждому, все и так далее. Такой иероглиф будем называть квантором всеобщности. А вот и еще один квантор, но уже существование. Английскую букву е отразили в Paint-е слева направо, намекая тем самым на заморский глагол "exist", по-нашему будем читать: существует, найдется, имеется и другим подобным образом. Восклицательный знак такому квантору существования добавит единственности. Если с этим понятно, двигаемся дальше. Неопределенные интегралы вам наверняка попадались в классе так одиннадцатом, я бы хотел напомнить, что это не просто какая-то первообразная, а совокупность всех первообразных подынтегральной функции. Так что не забывайте про С - константу интегрирования. Между делом, сам значок интеграла - это просто вытянутая буква s, отголосок латинского слова сумма. В этом как раз и есть геометрический смысл определенного интеграла: поиск площади фигуры под графиком суммированием бесконечно малых величин. Как по мне, это самое романтичное занятие в матанализе. А вот школьная геометрия полезнее всего тем, что приучает к логической строгости. К первому курсу у вас должно быть чёткое понимание, что такое следствие, что такое равносильность. Ну нельзя путаться в необходимости и достаточности, понимаете? Давайте даже попробуем копнуть чуть-чуть глубже. Если вы решили заняться высшей математикой, то я представляю, насколько у вас все плохо с личной жизнью, но именно поэтому вы наверняка согласитесь одолеть небольшое упражнение. Здесь три пункта, в каждом имеется левая и правая части, которую вам нужно связать одним из трех нарисованных символов. Пожалуйста, кликните паузу, попробуйте сами, а затем послушайте, что я вам скажу. Если x=-2, то |x|=2, а вот слева направо так фразу уже построить. Во втором пункте в левой и правой частях написано абсолютно одно и то же. А третий пункт можно прокомментировать так: каждый прямоугольник является параллелограммом, но не каждый параллелограмм является прямоугольником. Да, знаю, что вы уже не маленькие, но все же мои аплодисменты тем, кто справился с этим упражнением. Ну да ладно, хватит, давайте вспомним числовые множества. Натуральные числа используются при счете: 1, 2, 3, 4 и так далее. В природе -1 яблока не существует, но, кстати, целые числа позволяют говорить о таких вещах. Буква ℤ кричит нам о важной роли нуля, множество рациональных чисел обозначается буквой ℚ, и это неслучайно. В английском слово "quotient" означает "отношение". Кстати, если где-нибудь в Бруклине к вам подойдет афроамериканец и скажет: "Keep it real!", - можете быть уверены, перед вами математик, почитатель действительных чисел. Ну а вам стоит почитать что-нибудь о комплексных числах, будет полезней. Мы же сейчас сделаем откат, вернемся в первый класс самой что ни на есть обычной греческой школы. Короче говоря, помянем древний алфавит. Первая буква - альфа, затем бетта, этот крючок - гамма, потом дельта, после неё следует эпсилон и так далее, вплоть до последней буквы омега. Можете не сомневаться, что у греков есть и прописные буквы, но мы сейчас не будем о грустном. Мы лучше о веселом - о пределах. Но тут как раз никаких загадок и нет, сразу понятно, от какого слова появился математический символ. Ну а стало быть, мы можем перейти к финальной части видео. Пожалуйста, попробуйте озвучить определение предела числовой последовательности, которое сейчас написано перед вами. Кликайте скорее паузу и соображаете, и да будет вам счастье годовалого ребенка, узнавшего слово "мама". Если для любого эпсилон больше нуля найдется натуральное N, да такое, что для всех номеров числовой последовательности, больших N, выполнено неравенство |xₙ-a|<Ɛ (эпсилон), то тогда предел числовой последовательности xₙ , при n, стремящемся к бесконечности, равен числу a. Такие вот дела, ребята. Не беда, если вам не удалось прочесть это определение, главное в свое время его понять. Напоследок отмечу: множество тех, кто посмотрел этот ролик, но до сих пор не подписан на канал, не является пустым. Это меня очень печалит, так что во время финальной музыки покажу, как это исправить. Ну а остальным желаю мыслить критически, заниматься математикой! Счастливо! [Музыка / аплодиминнты]

Общие сведения

Система складывалась, наподобие естественных языков, исторически (см. история математических обозначений), и организована наподобие письменности естественных языков, заимствуя оттуда также многие символы (прежде всего, из латинского и греческого алфавитов). Символы, также как и в обычной письменности, изображаются контрастными линиями на равномерном фоне (чёрные на белой бумаге, светлые на тёмной доске, контрастные на мониторе и т. д.), и значение их определяется в первую очередь формой и взаимным расположением. Цвет во внимание не принимается и обычно не используется, но, при использовании букв , такие их характеристики как начертание и даже гарнитура , не влияющие на смысл в обычной письменности, в математических обозначениях могут играть смыслоразличающую роль.

Структура

Обыкновенные математические обозначения (в частности, так называемые математические формулы ) пишутся в общем в строку слева направо, однако не обязательно составляют последовательную строку символов. Отдельные блоки символов могут располагаться в верхней или нижней половине строки, даже в случае, когда символы не перекрываются вертикалями. Также, некоторые части располагаются целиком выше или ниже строки. С грамматической же стороны почти любую «формулу» можно считать иерархически организованной структурой типа дерева .

Стандартизация

Математические обозначения представляют систему в смысле взаимосвязи своих компонент, но, в целом, не составляют формальную систему (в понимании самой математики). Они, в сколь-нибудь сложном случае, не могут быть даже разобраны программно . Как и любой естественный язык, «язык математики» полон несогласованных обозначений, омографов , различных (в среде своих носителей) трактовок того, что́ считать правильным и т. п. Нет даже сколь-нибудь обозримого алфавита математических символов, и в частности оттого, что не всегда однозначно решается вопрос, считать ли два обозначения разными символами или же разными написаниями одного символа.

Некоторая часть математических обозначений (в основном, связанная с измерениями) стандартизована в ISO 31 -11, однако в целом стандартизация обозначений скорее отсутствует.

Элементы математических обозначений

Числа

При необходимости применить систему счисления с основанием , меньшим десяти, основание записывается в нижний индекс: 20003 8 . Системы счисления с основаниями, бо́льшими десяти, в общепринятой математической записи не применяются (хотя, разумеется, изучаются самой наукой), поскольку для них не хватает цифр. В связи с развитием информатики , стала актуальной шестнадцатеричная система счисления , в которой цифры от 10 до 15 обозначаются первыми шестью латинскими буквами от A до F. Для обозначения таких чисел в информатике используется несколько разных подходов, но в математику они не перенесены.

Надстрочные и подстрочные знаки

Скобки, подобные им символы и разделители

Круглые скобки «()» используются:

Квадратные скобки «» нередко применяются в значении группировки, когда приходится использовать много пар скобок. В таком случае они ставятся снаружи и (при аккуратной типографике) имеют бо́льшую высоту, чем скобки, стоя́щие внутри.

Квадратные «» и круглые «()» скобки используются при обозначении закрытых и открытых промежутков соответственно.

Фигурные скобки «{}» используются, как правило, для , хотя в отношении них справедлива та же оговорка, что и для квадратных скобок. Левая «{» и правая «}» скобки могут использоваться по отдельности; их назначение описано .

Символы угловых скобок « ⟨ ⟩ {\displaystyle \langle \;\rangle } » при аккуратной типографике должны иметь тупые углы и тем отличаться от схожих , имеющих прямой или острый угол. На практике же на это не следует надеяться (особенно, при ручной записи формул) и различать их приходится при помощи интуиции.

Часто используются пары симметричных (относительно вертикальной оси) символов, в том числе и отличных от перечисленных, для выделения куска формулы. Назначение парных скобок описано .

Индексы

В зависимости от расположения различают верхние и нижние индексы. Верхний индекс может означать (но необязательно означает) возведение в степень , об остальных случаях использования .

Переменные

В науках встречаются наборы величин, и любая из них может принимать или набор значений и называться переменной величиной (вариантой), или только одно значение и называться константой. В математике от физического смысла величины часто отвлекаются, и тогда переменная величина превращается в отвлечённую (или числовую) переменную, обозначаемую каким-нибудь символом, не занятым специальными обозначениями, о которых было сказано выше.

Переменная X считается заданной, если указано множество принимаемых ею значений {x} . Постоянную же величину удобно рассматривать как переменную, у которой соответствующее множество {x} состоит из одного элемента.

Функции и операторы

В математике не усматривается существенного различия между оператором (унарным), отображением и функцией .

Однако, подразумеваются, что если для записи значения отображения от заданных аргументов необходимо указывать , то символ оного отображения обозначает функцию, в иных случаях скорее говорят об операторе. Символы некоторых функций одного аргумента употребляются и со скобками и без. Многие элементарные функции , например sin ⁡ x {\displaystyle \sin x} или sin ⁡ (x) {\displaystyle \sin(x)} , но элементарные функции всегда называются функциями .

Операторы и отношения (унарные и бинарные)

Функции

Функция может упоминаться в двух смыслах: как выражение её значения при заданных аргументах (пишется f (x) , f (x , y) {\displaystyle f(x),\ f(x,y)} и т. п.) или собственно как функция. В последнем случае ставится только символ функции, без скобок (хотя зачастую пишут как попало).

Имеется много обозначений общепринятых функций, используемых в математических работах без дополнительных пояснений. В противном случае функцию надо как-то описывать и в фундаментальной математике она принципиально не отличается от и точно также обозначается произвольной буквой. Для обозначения функций-переменных наиболее популярна буква f , также часто применяются g и большинство греческих.

Предопределённые (зарезервированные) обозначения

Однако, однобуквенным обозначениям может быть, при желании, придан другой смысл. Например, буква i часто используется как обозначение индекса в контексте, где комплексные числа не применяются, а буква может быть использована как переменная в какой-нибудь комбинаторике . Также, символы теории множеств (такие как « ⊂ {\displaystyle \subset } » и « ⊃ {\displaystyle \supset } ») и исчисления высказываний (такие как « ∧ {\displaystyle \wedge } » и « ∨ {\displaystyle \vee } ») могут быть использованы в другом смысле, обычно как отношение порядка и бинарные операции соответственно.

Индексирование

Индексирование графически изображается (обычно нижними, иногда и верхними) и является, в некоторым смысле, способом расширить информационное наполнение переменной. Однако, употребляется оно в трёх несколько различных (хотя и перекрывающихся) смыслах.

Собственно номера

Можно иметь несколько разных переменных, обозначая их одной буквой, аналогично использованию . Например: x 1 , x 2 , x 3 … {\displaystyle x_{1},\ x_{2},\ x_{3}\ldots } . Обычно они связаны какой-то общностью, но вообще это не обязательно.

Более того, в качестве «индексов» можно использовать не только числа, но и любые символы. Однако, когда в виде индекса пишется другая переменная и выражение, данная запись интерпретируется как «переменная с номером, определяемым значением индексного выражения».

В тензорном анализе

В линейной алгебре , тензорном анализе , дифференциальной геометрии с индексами (в виде переменных) записываются

из двух), 3 > 2 (три больше двух) и т.п.

Развитие математической символики было тесно связано с общим развитием понятий и методов математики. Первыми Знаки математические были знаки для изображения чисел - цифры , возникновение которых, по-видимому, предшествовало письменности. Наиболее древние системы нумерации - вавилонская и египетская - появились ещё за 3 1 / 2 тысячелетия до н. э.

Первые Знаки математические для произвольных величин появились много позднее (начиная с 5-4 вв. до н. э.) в Греции. Величины (площади, объёмы, углы) изображались в виде отрезков, а произведение двух произвольных однородных величин - в виде прямоугольника, построенного на соответствующих отрезках. В «Началах» Евклида (3 в. до н. э.) величины обозначаются двумя буквами - начальной и конечной буквами соответствующего отрезка, а иногда и одной. У Архимеда (3 в. до нашей эры) последний способ становится обычным. Подобное обозначение содержало в себе возможности развития буквенного исчисления. Однако в классической античной математике буквенного исчисления создано не было.

Начатки буквенного изображения и исчисления возникают в позднеэллинистическую эпоху в результате освобождения алгебры от геометрической формы. Диофант (вероятно, 3 в.) записывал неизвестную (х ) и её степени следующими знаками:

[ - от греческого термина dunamiV (dynamis - сила), обозначавшего квадрат неизвестной, - от греческого cuboV (k_ybos) - куб]. Справа от неизвестной или её степеней Диофант писал коэффициенты, например 3х 5 изображалось

(где = 3). При сложении Диофант приписывал слагаемые друг к другу, для вычитания употреблял специальный знак ; равенство Диофант обозначал буквой i [от греческого isoV (isos) - равный]. Например, уравнение

(x 3 + 8x ) - (5x 2 + 1) = х

У Диофанта записалось бы так:

(здесь

означает, что единица не имеет множителя в виде степени неизвестного).

Несколько веков спустя индийцы ввели различные Знаки математические для нескольких неизвестных (сокращения наименований цветов, обозначавших неизвестные), квадрата, квадратного корня, вычитаемого числа. Так, уравнение

3х 2 + 10x - 8 = x 2 + 1

В записи Брахмагупты (7 в.) имело бы вид:

Йа ва 3 йа 10 ру 8

Йа ва 1 йа 0 ру 1

(йа - от йават - тават - неизвестное, ва - от варга - квадратное число, ру - от рупа - монета рупия - свободный член, точка над числом означает вычитаемое число).

Создание современной алгебраической символики относится к 14-17 вв.; оно определялось успехами практической арифметики и учения об уравнениях. В различных странах стихийно появляются Знаки математические для некоторых действий и для степеней неизвестной величины. Проходят многие десятилетия и даже века, прежде чем вырабатывается тот или иной удобный символ. Так, в конце 15 и. Н. Шюке и Л. Пачоли употребляли знаки сложения и вычитания

(от лат. plus и minus), немецкие математики ввели современные + (вероятно, сокращение лат. et) и -. Ещё в 17 в. можно насчитать около десятка Знаки математические для действия умножения.

Различны были и Знаки математические неизвестной и её степеней. В 16 - начале 17 вв. конкурировало более десяти обозначений для одного только квадрата неизвестной, например се (от census - латинский термин, служивший переводом греческого dunamiV, Q (от quadratum), , A (2), , Aii, aa , a 2 и др. Так, уравнение

x 3 + 5x = 12

имело бы у итальянского математика Дж. Кардано (1545) вид:

у немецкого математика М. Штифеля (1544):

у итальянского математика Р. Бомбелли (1572):

французского математика Ф. Виета (1591):

у английского математика Т. Гарриота (1631):

В 16 и начале 17 вв. входят в употребление знаки равенства и скобки: квадратные (Р. Бомбелли , 1550), круглые (Н. Тарталья , 1556), фигурные (Ф. Виет , 1593). В 16 в. современный вид принимает запись дробей.

Значительным шагом вперёд в развитии математической символики явилось введение Виетом (1591) Знаки математические для произвольных постоянных величин в виде прописных согласных букв латинского алфавита В, D, что дало ему возможность впервые записывать алгебраические уравнения с произвольными коэффициентами и оперировать ими. Неизвестные Виет изображал гласными прописными буквами А, Е,... Например, запись Виета

В наших символах выглядит так:

x 3 + 3bx = d.

Виет явился творцом алгебраических формул. Р. Декарт (1637) придал знакам алгебры современный вид, обозначая неизвестные последними буквами лат. алфавита х, у, z, а произвольные данные величины - начальными буквами а, b, с. Ему же принадлежит нынешняя запись степени. Обозначения Декарта обладали большим преимуществом по сравнению со всеми предыдущими. Поэтому они скоро получили всеобщее признание.

Дальнейшее развитие Знаки математические было тесно связано с созданием анализа бесконечно малых, для разработки символики которого основа была уже в большой мере подготовлена в алгебре.

Даты возникновения некоторых математических знаков


знак

значение

Кто ввёл

Когда введён
Знаки индивидуальных объектов

¥

бесконечность

Дж. Валлис

1655

e

основание натуральных логарифмов

Л. Эйлер

1736

p

отношение длины окружности к диаметру

У. Джонс

Л. Эйлер


1706

i

корень квадратный из -1

Л. Эйлер

1777 (в печати 1794)

i j k

единичные векторы, орты

У. Гамильтон

1853

П (а)

угол параллельности

Н.И. Лобачевский

1835
Знаки переменных объектов

x,y, z

неизвестные или переменные величины

Р. Декарт

1637

r

вектор

О. Коши

1853
Знаки индивидуальных операций

+

сложение

немецкие математики

Конец 15 в.



вычитание

´

умножение

У. Оутред

1631

×

умножение

Г. Лейбниц

1698

:

деление

Г. Лейбниц

1684

a 2 , a 3 ,…, a n

степени

Р. Декарт

1637

И. Ньютон

1676



корни

К. Рудольф

1525

А. Жирар

1629

Log

логарифм

И. Кеплер

1624

log

Б. Кавальери

1632

sin

синус

Л. Эйлер

1748

cos

косинус

tg

тангенс

Л. Эйлер

1753

arc.sin

арксинус

Ж. Лагранж

1772

Sh


гиперболический синус
В. Риккати
1757

Ch


гиперболический косинус

dx, ddx, …

дифференциал

Г. Лейбниц

1675 (в печати 1684)

d 2 x, d 3 x,…




интеграл

Г. Лейбниц

1675 (в печати 1686)



производная

Г. Лейбниц

1675

¦¢x

производная

Ж. Лагранж

1770, 1779

y’

¦¢(x)

Dx

разность

Л. Эйлер

1755



частная производная

А. Лежандр

1786



определённый интеграл

Ж. Фурье

1819-22



сумма

Л. Эйлер

1755

П

произведение

К. Гаусс

1812

!

факториал

К. Крамп

1808

|x|

модуль

К. Вейерштрасс

1841

lim

предел


У. Гамильтон,

многие математики


1853,

начало 20 в.


lim

n = ¥

lim

n ® ¥

x

дзета-функция

Б. Риман

1857

Г

гамма-функция

А. Лежандр

1808

В

бета-функция

Ж. Бине

1839

D

дельта (оператор Лапласа)

Р. Мёрфи

1833

Ñ

набла (оператор Гамильтона)

У. Гамильтон

1853
Знаки переменных операций

jx

функция

И. Бернули

1718

f (x)

Л. Эйлер

1734
Знаки индивидуальных отношений

=

равенство

Р. Рекорд

1557

>

больше

Т. Гарриот

1631

<

меньше

º

сравнимость

К. Гаусс

1801


параллельность

У. Оутред

1677

^

перпендикулярность

П. Эригон

1634

И. Ньютон в своём методе флюксий и флюент (1666 и следующие гг.) ввёл знаки для последовательных флюксий (производных) величины (в виде

и для бесконечно малого приращения o . Несколько ранее Дж. Валлис (1655) предложил знак бесконечности ¥.

Создателем современной символики дифференциального и интегрального исчислений является Г. Лейбниц . Ему, в частности, принадлежат употребляемые ныне Знаки математические дифференциалов

dx, d 2 x, d 3 x

и интеграла

Огромная заслуга в создании символики современной математики принадлежат Л. Эйлеру . Он ввёл (1734) в общее употребление первый знак переменной операции, именно знак функции f (x ) (от лат. functio). После работ Эйлера знаки для многих индивидуальных функций, например тригонометрических, приобрели стандартный характер. Эйлеру же принадлежат обозначения постоянных е (основание натуральных логарифмов, 1736), p [вероятно, от греческого perijereia (periphereia) - окружность, периферия, 1736], мнимой единицы

(от французского imaginaire - мнимый, 1777, опубликовано в 1794).

В 19 в. роль символики возрастает. В это время появляются знаки абсолютной величины |x| (К. Вейерштрасс , 1841), вектора (О. Коши , 1853), определителя

(А. Кэли , 1841) и др. Многие теории, возникшие в 19 в., например Тензорное исчисление, не могли быть развиты без подходящей символики.

Наряду с указанным процессом стандартизации Знаки математические в современной литературе весьма часто можно встретить Знаки математические , используемые отдельными авторами только в пределах данного исследования.

С точки зрения математической логики, среди Знаки математические можно наметить следующие основные группы: А) знаки объектов, Б) знаки операций, В) знаки отношений. Например, знаки 1, 2, 3, 4 изображают числа, т. е. объекты, изучаемые арифметикой. Знак операции сложения + сам по себе не изображает никакого объекта; он получает предметное содержание, когда указано, какие числа складываются: запись 1 + 3 изображает число 4. Знак > (больше) есть знак отношения между числами. Знак отношения получает вполне определённое содержание, когда указано, между какими объектами отношение рассматривается. К перечисленным трём основным группам Знаки математические примыкает четвёртая: Г) вспомогательные знаки, устанавливающие порядок сочетания основных знаков. Достаточное представление о таких знаках дают скобки, указывающие порядок производства действий.

Знаки каждой из трёх групп А), Б) и В) бывают двух родов: 1) индивидуальные знаки вполне определённых объектов, операций и отношений, 2) общие знаки «неременных», или «неизвестных», объектов, операций и отношений.

Примеры знаков первого рода могут служить (см. также таблицу):

A 1) Обозначения натуральных чисел 1, 2, 3, 4, 5, 6, 7, 8, 9; трансцендентных чисел е и p; мнимой единицы i.

Б 1) Знаки арифметических действий +, -, ·, ´,:; извлечения корня , дифференцирования

знаки суммы (объединения) È и произведения (пересечения) Ç множеств; сюда же относятся знаки индивидуальных функций sin, tg, log и т.п.

1) Знаки равенства и неравенства =, >, <, ¹, знаки параллельности || и перпендикулярности ^, знаки принадлежности Î элемента некоторому множеству и включения Ì одного множества в другое и т.п.

Знаки второго рода изображают произвольные объекты, операции и отношения определённого класса или объекты, операции и отношения, подчинённые каким-либо заранее оговорённым условиям. Например, при записи тождества (a + b )(a - b ) = a 2 - b 2 буквы а и b обозначают произвольные числа; при изучения функциональной зависимости у = х 2 буквы х и у - произвольные числа, связанные заданным отношением; при решении уравнения

х обозначает любое число, удовлетворяющее данному уравнению (в результате решения этого уравнения мы узнаём, что этому условию соответствуют лишь два возможных значения +1 и -1).

С логической точки зрения, законно такого рода общие знаки называть знаками переменных, как это принято в математической логике, не пугаясь того обстоятельства, что «область изменения» переменного может оказаться состоящей из одного единственного объекта или даже «пустой» (например, в случае уравнений, не имеющих решения). Дальнейшими примерами такого рода знаков могут служить:

A 2) Обозначения точек, прямых, плоскостей и более сложных геометрических фигур буквами в геометрии.

Б 2) Обозначения f, , j для функций и обозначения операторного исчисления, когда одной буквой L изображают, например, произвольный оператор вида:

Обозначения для «переменных отношений» менее распространены, они находят применение лишь в математической логике (см. Алгебра логики ) и в сравнительно абстрактных, по преимуществу аксиоматических, математических исследованиях.

Лит.: Cajori ., A history of mathematical notations, v. 1-2, Chi., 1928-29.

Статья про слово "Знаки математические " в Большой Советской Энциклопедии была прочитана 39765 раз

Бесконечность. Дж.Валлис (1655).

Впервые встречается в трактате английского математика Джон Валиса "О конических сечениях".

Основание натуральных логарифмов. Л.Эйлер (1736).

Математическая константа, трансцендентное число. Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы «Описание удивительной таблицы логарифмов» (1614). Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Саму же константу впервые вычислил швейцарский математик Якоб Бернулли в ходе решения задачи о предельной величине процентного дохода.

2,71828182845904523...

Первое известное использование этой константы, где она обозначалась буквой b , встречается в письмах Лейбница Гюйгенсу, 1690-1691 годы. Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 год. Соответственно, e обычно называют числом Эйлера . Почему была выбрана именно буква e , точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a , b , c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой.

Отношение длины окружности к диаметру. У.Джонс (1706), Л.Эйлер (1736).

Математическая константа, иррациональное число. Число "пи", старое название - лудольфово число. Как и всякое иррациональное число, π представляется бесконечной непереодической десятичной дробью:

π =3,141592653589793...

Впервые обозначением этого числа греческой буквой π воспользовался британский математик Уильям Джонс в книге «Новое введение в математику», а общепринятым оно стало после работ Леонарда Эйлера. Это обозначение происходит от начальной буквы греческих слов περιφερεια - окружность, периферия и περιμετρος - периметр. Иоганн Генрих Ламберт доказал иррациональность π в 1761 году, а Адриен Мари Лежандр в 1774 году доказал иррациональность π 2 . Лежандр, и Эйлер предполагали, что π может быть трансцендентным, т.е. не может удовлетворять никакому алгебраическому уравнению с целыми коэффициентами, что было в конечном итоге доказано в 1882 году Фердинандом фон Линдеманом.

Мнимая единица. Л.Эйлер (1777, в печати - 1794).

Известно, что уравнение х 2 =1 имеет два корня: 1 и -1 . Мнимая единица - это один из двух корней уравнения х 2 =-1 , обозначается латинской буквой i , ещё один корень: -i . Это обозначение предложил Леонард Эйлер, взявший для этого первую букву латинского слова imaginarius (мнимый). Он же распространил все стандартные функции на комплексную область, т.е. множество чисел, представимых в виде a+ib , где a и b - действительные числа. В широкое употребление термин «комплексное число» ввёл немецкий математик Карл Гаусс в 1831 году, хотя этот термин ранее использовал в том же смысле французский математик Лазар Карно в 1803 году.

Единичные векторы. У.Гамильтон (1853).

Единичные векторы часто связывают с координатными осями системы координат (в частности, с осями декартовой системы координат). Единичный вектор, направленный вдоль оси Х , обозначается i , единичный вектор, направленный вдоль оси Y , обозначается j , а единичный вектор, направленный вдоль оси Z , обозначается k . Векторы i , j , k называются ортами, они имеют единичные модули. Термин "орт" ввёл английский математик, инженер Оливер Хевисайд (1892), а обозначения i , j , k - ирландский математик Уильям Гамильтон.

Целая часть числа, антье. К.Гаусс (1808).

Целой частью числа [х] числа х называется наибольшее целое число, не превосходящее х. Так, =5, [-3,6]=-4. Функцию [х] называют также "антье от х". Символ функции «целая часть» ввёл Карл Гаусс в 1808 году. Некоторые математики предпочитают использовать вместо него обозначение E(x), предложенное в 1798 году Лежандром.

Угол параллельности. Н.И. Лобачевский (1835).

На плоскости Лобачевского - угол между прямой b , проходящей через точку О параллельно прямой a , не содержащей точку О , и перпендикуляром из О на a . α - длина этого перпендикуляра. По мере удаления точки О от прямой a угол параллельности убывает от 90° до 0°. Лобачевский дал формулу для угла параллельности П(α )=2arctg e - α /q , где q — некоторая постоянная, связанная с кривизной пространства Лобачевского.

Неизвестные или переменные величины. Р. Декарт (1637).

В математике переменная - это величина, характеризующаяся множеством значений, которое она может принимать. При этом может иметься в виду как реальная физическая величина, временно рассматриваемая в отрыве от своего физического контекста, так и некая абстрактная величина, не имеющая никаких аналогов в реальном мире. Понятие переменной возникло в XVII в. первоначально под влиянием запросов естествознания, выдвинувшего на первый план изучение движения, процессов, а не только состояний. Это понятие требовало для своего выражения новых форм. Такими новыми формами и явились буквенная алгебра и аналитическая геометрия Рене Декарта. Впервые прямоугольную систему координат и обозначения х, у ввел Рене Декарт в своей работе «Рассуждение о методе» в 1637 году. Вклад в развитие координатного метода внес также Пьер Ферма, однако его работы были впервые опубликованы уже после его смерти. Декарт и Ферма применяли координатный метод только на плоскости. Координатный метод для трёхмерного пространства впервые применил Леонард Эйлер уже в XVIII веке.

Вектор. О.Коши (1853).

С самого начала вектор понимается как объект, имеющий величину, направление и (необязательно) точку приложения. Зачатки векторного исчисления появились вместе с геометрической моделью комплексных чисел у Гаусса (1831). Развитые операции с векторами опубликовал Гамильтон как часть своего кватернионного исчисления (вектор образовывали мнимые компоненты кватерниона). Гамильтон предложил сам термин вектор (от латинского слова vector , несущий ) и описал некоторые операции векторного анализа. Этот формализм использовал Максвелл в своих трудах по электромагнетизму, тем самым обратив внимание учёных на новое исчисление. Вскоре вышли «Элементы векторного анализа» Гиббса (1880-е годы), а затем Хевисайд (1903) придал векторному анализу современный вид. Сам знак вектора ввёл в использование французский математик Огюстен Луи Коши в 1853 году.

Сложение, вычитание. Я.Видман (1489).

Знаки плюса и минуса придумали, по-видимому, в немецкой математической школе «коссистов» (то есть алгебраистов). Они используются в учебнике Яна (Йоханнеса) Видмана «Быстрый и приятный счёт для всех торговцев», изданном в 1489 году. До этого сложение обозначалось буквой p (от латинского plus «больше») или латинским словом et (союз «и»), а вычитание - буквой m (от латинского minus «менее, меньше»). У Видмана символ плюса заменяет не только сложение, но и союз «и». Происхождение этих символов неясно, но, скорее всего, они ранее использовались в торговом деле как признаки прибыли и убытка. Оба символа вскоре получили общее распространение в Европе — за исключением Италии, которая ещё около века использовала старые обозначения.

Умножение. У.Оутред (1631), Г.Лейбниц (1698).

Знак умножения в виде косого крестика ввёл в 1631 году англичанин Уильям Оутред. До него использовали чаще всего букву M , хотя предлагались и другие обозначения: символ прямоугольника (французский математик Эригон, 1634), звёздочка (швейцарский математик Иоганн Ран, 1659). Позднее Готфрид Вильгельм Лейбниц заменил крестик на точку (конец XVII века), чтобы не путать его с буквой x ; до него такая символика встречалась у немецкого астронома и математика Региомонтана (XV век) и английского учёного Томаса Хэрриота (1560 -1621).

Деление. И.Ран (1659), Г.Лейбниц (1684).

Уильям Оутред в качестве знака деления использовал косую черту /. Двоеточием деление стал обозначать Готфрид Лейбниц. До них часто использовали также букву D . Начиная с Фибоначчи, используется также горизонтальная черта дроби, употреблявшаяся ещё у Герона, Диофанта и в арабских сочинениях. В Англии и США распространение получил символ ÷ (обелюс), который предложил Иоганн Ран (возможно, при участии Джона Пелла) в 1659 году. Попытка Американского национального комитета по математическим стандартам (National Committee on Mathematical Requirements ) вывести обелюс из практики (1923) оказалась безрезультатной.

Процент. М. де ла Порт (1685).

Сотая доля целого, принимаемого за единицу. Само слово «процент» происходит от латинского "pro centum", что означает в переводе "на сто". В 1685 году в Париже была издана книга «Руководство по коммерческой арифметике» Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали «cto» (сокращённо от cento). Однако наборщик принял это «cto» за дробь и напечатал "%". Так из-за опечатки этот знак вошёл в обиход.

Степени. Р.Декарт (1637), И.Ньютон (1676).

Современная запись показателя степени введена Рене Декартом в его «Геометрии » (1637), правда, только для натуральных степеней с показателями больших 2. Позднее, Исаак Ньютон распространил эту форму записи на отрицательные и дробные показатели (1676), трактовку которых к этому времени уже предложили: фламандский математик и инженер Симон Стевин, английский математик Джон Валлис и французский математик Альбер Жирар.

Арифметический корень n -й степени из действительного числа а ≥0, - неотрицательное число n -я степень которого равна а . Арифметический корень 2-й степени называется квадратным корнем и может записываться без указания степени: √ . Арифметический корень 3-й степени называется кубическим корнем. Средневековые математики (например, Кардано) обозначали квадратный корень символом R x (от латинского Radix , корень). Современное обозначение впервые употребил немецкий математик Кристоф Рудольф, из школы коссистов, в 1525 году. Происходит этот символ от стилизованной первой буквы того же слова radix . Черта над подкоренным выражением вначале отсутствовала; её позже ввёл Декарт (1637) для иной цели (вместо скобок), и эта черта вскоре слилась со знаком корня. Кубический корень в XVI веке обозначался следующим образом: R x .u.cu (от лат. Radix universalis cubica ). Привычное нам обозначение корня произвольной степени начал использовать Альбер Жирар (1629). Закрепился этот формат благодаря Исааку Ньютону и Готфриду Лейбницу.

Логарифм, десятичный логарифм, натуральный логарифм. И.Кеплер (1624), Б.Кавальери (1632), А. Принсхейм (1893).

Термин "логарифм" принадлежит шотландскому математику Джону Неперу («Описание удивительной таблицы логарифмов», 1614); он возник из сочетания от греческих слов λογος (слово, отношение) и αριθμος (число). Логарифм у Дж. Непера - вспомогательное число для измерения отношения двух чисел. Современное определение логарифма впервые дано английским математиком Уильямом Гардинером (1742). По определению, логарифм числа b по основанию a (a 1, a > 0 ) - показатель степени m , в которую следует возвести число a (называемое основанием логарифма), чтобы получить b . Обозначается log a b. Итак, m = log a b , если a m = b.

Первые таблицы десятичных логарифмов опубликовал в 1617 году оксфордский профессор математики Генри Бригс. Поэтому за рубежом десятичные логарифмы часто называют бригсовыми. Термин "натуральный логарифм" ввели Пьетро Менголи (1659) и Николас Меркатор (1668), хотя лондонский учитель математики Джон Спайделл ещё в 1619 году составил таблицу натуральных логарифмов.

До конца XIX века общепринятого обозначения логарифма не было, основание a указывалось то левее и выше символа log , то над ним. В конечном счёте математики пришли к выводу, что наиболее удобное место для основания - ниже строки, после символа log . Знак логарифма - результат сокращения слова "логарифм" - встречается в различных видах почти одновременно с появлением первых таблиц логарифмов, например Log - у И. Кеплера (1624) и Г. Бригса (1631), log - у Б. Кавальери (1632). Обозначение ln для натурального логарифма ввёл немецкий математик Альфред Прингсхейм (1893).

Синус, косинус, тангенс, котангенс. У.Оутред (сер. XVII века), И.Бернулли (XVIII в.), Л.Эйлер (1748, 1753).

Сокращённые обозначения для синуса и косинуса ввёл Уильям Оутред в середине XVII века. Сокращённые обозначения тангенса и котангенса: tg, ctg введены Иоганном Бернулли в XVIII веке, они получили распространение в Германии и России. В других странах употребляются названия этих функций tan, cot предложенные Альбером Жираром ещё ранее, в начале XVII века. В современную форму теорию тригонометрических функций привёл Леонард Эйлер (1748, 1753), ему же мы обязаны и закреплением настоящей символики. Термин "тригонометрические функции" введён немецким математиком и физиком Георгом Симоном Клюгелем в 1770 году.

Линия синуса у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды), затем слово «арха» было отброшено и линию синуса стали называть просто «джива» . Арабские переводчики не перевели слово «джива» арабским словом «ватар» , обозначающим тетиву и хорду, а транскрибировали арабскими буквами и стали называть линию синуса «джиба» . Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса «джайб» , что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus , имеющим то же значение. Термин «тангенс» (от лат. tangens - касающийся) был введен датским математиком Томасом Финке в его книге «Геометрия круглого» (1583).

Арксинус. К.Шерфер (1772), Ж.Лагранж (1772).

Обратные тригонометрические функции - математические функции, которые являются обратными к тригонометрическим функциям. Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки "арк" (от лат. arc - дуга). К обратным тригонометрическим функциям обычно относят шесть функций: арксинус (arcsin), арккосинус (arccos), арктангенс (arctg), арккотангенс (arcctg), арксеканс (arcsec) и арккосеканс (arccosec). Впервые специальные символы для обратных тригонометрических функций использовал Даниил Бернулли (1729, 1736). Манера обозначать обратные тригонометрических функции с помощью приставки arc (от лат. arcus , дуга) появилась у австрийского математика Карла Шерфера и закрепилась благодаря французскому математику, астроному и механику Жозефу Луи Лагранжу. Имелось в виду, что, например, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: sin -1 и 1/sin, но они не получили широкого распространения.

Гиперболический синус, гиперболический косинус. В.Риккати (1757).

Первое появление гиперболических функций историки обнаружили в трудах английского математика Абрахама де Муавра (1707, 1722). Современное определение и обстоятельное их исследование выполнил итальянец Винченцо Риккати в 1757 году в работе «Opusculorum», он же предложил их обозначения: sh , ch . Риккати исходил из рассмотрения единичной гиперболы. Независимое открытие и дальнейшее исследование свойств гиперболических функций было проведено немецким математиком, физиком и философом Иоганном Ламбертом (1768), который установил широкий параллелизм формул обычной и гиперболической тригонометрии. Н.И. Лобачевский впоследствии использовал этот параллелизм, пытаясь доказать непротиворечивость неевклидовой геометрии, в которой обычная тригонометрия заменяется на гиперболическую.

Подобно тому, как тригонометрические синус и косинус являются координатами точки на координатной окружности, гиперболические синус и косинус являются координатами точки на гиперболе. Гиперболические функции выражаются через экспоненту и тесно связанных с тригонометрическими функциями: sh(x)=0,5(e x -e -x ) , ch(x)=0,5(e x +e -x ). По аналогии с тригонометрическими функциями определены гиперболические тангенс и котангенс как отношения гиперболических синуса и косинуса, косинуса и синуса, соответственно.

Дифференциал. Г.Лейбниц (1675, в печати 1684).

Главная, линейная часть приращения функции. Если функция y=f(x) одного переменного x имеет при x=x 0 производную, и приращение Δy=f(x 0 +?x)-f(x 0 ) функции f(x) можно представить в виде Δy=f"(x 0 )Δx+R(Δx ) , где член R бесконечно мал по сравнению с Δx . Первый член dy=f"(x 0 )Δx в этом разложении и называется дифференциалом функции f(x) в точке x 0 . В работах Готфрида Лейбница, Якоба и Иоганна Бернулли слово "differentia" употреблялось в смысле "приращение", его И. Бернулли обозначал через Δ. Г. Лейбниц (1675, в печати 1684) для "бесконечно малой разности" использовал обозначение d - первую букву слова "differential" , образованого им же от "differentia" .

Неопределённый интеграл. Г.Лейбниц (1675, в печати 1686).

Слово "интеграл" впервые в печати употребил Якоб Бернулли (1690). Возможно, термин образован от латинского integer - целый. По другому предположению, основой послужило латинское слово integro - приводить в прежнее состояние, восстанавливать. Знак ∫ используется для обозначения интеграла в математике и представляет собой стилизованное изображение первой буквы латинского слова summa - сумма. Впервые он был использован немецким математиком основателем дифференциального и интегрального исчислений Готфридом Лейбницем в конце XVII века. Другой из основателей дифференциального и интегрального исчислений Исаак Ньютон в своих работах не предложил альтернативной символики интеграла, хотя пробовал различные варианты: вертикальную черту над функцией или символ квадрата, который стоит перед функцией или окаймляет её. Неопределённый интеграл для функции y=f(x) — это совокупность всех первообразных данной функции.

Определённый интеграл. Ж.Фурье (1819-1822).

Определённый интеграл функции f(x) с нижним пределом a и верхним пределом b можно определить как разность F(b) - F(a) = a ∫ b f(x)dx , где F(х) - некоторая первообразная функции f(x) . Определённый интеграл a ∫ b f(x)dx численно равен площади фигуры, ограниченной осью абсцисс, прямыми x=a и x=b и графиком функции f(x) . Оформление определённого интеграла в привычном нам виде предложил французский математик и физик Жан Батист Жозеф Фурье в начале XIX века.

Производная. Г.Лейбниц (1675), Ж.Лагранж (1770, 1779).

Производная - основное понятие дифференциального исчисления, характеризующее скорость изменения функции f(x) при изменении аргумента x . Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную в некоторой точке, называют дифференцируемой в данной точке. Процесс вычисления производной называется дифференцированием. Обратный процесс - интегрирование. В классическом дифференциальном исчислении производная чаще всего определяется через понятия теории пределов, однако исторически теория пределов появилась позже дифференциального исчисления.

Термин "производная" ввёл Жозеф Луи Лагранж в 1797 году, обозначения производной с помощью штриха - он же (1770, 1779), а dy/dx - Готфрид Лейбниц в 1675 году. Манера обозначать производную по времени точкой над буквой идёт от Ньютона (1691). Русский термин «производная функции» впервые употребил русский математик Василий Иванович Висковатов (1779-1812) .

Частная производная. А. Лежандр (1786), Ж.Лагранж (1797, 1801).

Для функций многих переменных определяются частные производные - производные по одному из аргументов, вычисленные в предположении, что остальные аргументы постоянны. Обозначения ∂f/x , z/y ввёл французский математик Адриен Мари Лежандр в 1786 году; f x " , z x " - Жозеф Луи Лагранж (1797, 1801); 2 z/x 2 , 2 z/xy - частные производные второго порядка - немецкий математик Карл Густав Якоб Якоби (1837).

Разность, приращение. И.Бернулли (кон. XVII в. - перв. пол. XVIII в.), Л.Эйлер (1755).

Обозначение приращения буквой Δ впервые употребил швейцарский математик Иоганн Бернулли. В общую практику использования символ "дельта" вошёл после работ Леонарда Эйлера в 1755 году.

Сумма. Л.Эйлер (1755).

Сумма - результат сложения величин (чисел, функций, векторов, матриц и т. д.). Для обозначения суммы n чисел a 1 , a 2 , ..., a n применяется греческая буква "сигма" Σ : a 1 + a 2 + ... + a n = Σ n i=1 a i = Σ n 1 a i . Знак Σ для суммы ввёл Леонард Эйлер в 1755 году.

Произведение. К.Гаусс (1812).

Произведение - результат умножения. Для обозначения произведения n чисел a 1 , a 2 , ..., a n применяется греческая буква "пи" Π: a 1 · a 2 · ... · a n = Π n i=1 a i = Π n 1 a i . Например, 1 · 3 · 5 · ... · 97 · 99 = ? 50 1 (2i-1). Знак Π для произведения ввёл немецкий математик Карл Гаусс в 1812 году. В русской математической литературе термин "произведение" впервые встречается у Леонтия Филипповича Магницкого в 1703 году.

Факториал. К.Крамп (1808).

Факториал числа n (обозначается n!, произносится "эн факториал") - произведение всех натуральных чисел до n включительно: n! = 1·2·3·...·n. Например, 5! = 1·2·3·4·5 = 120. По определению полагают 0! = 1. Факториал определён только для целых неотрицательных чисел. Факториал числа n равен числу перестановок из n элементов. Например, 3! = 6, действительно,

♣ ♦

♦ ♣

♦ ♣

♦ ♣

Все шесть и только шесть вариантов перестановок из трёх элементов.

Термин "факториал" ввёл французский математик и политический деятель Луи Франсуа Антуан Арбогаст (1800), обозначение n! - французский математик Кристиан Крамп (1808).

Модуль, абсолютная величина. К.Вейерштрасс (1841).

Модуль, абсолютная величина действительного числа х - неотрицательное число, определяемое следующим образом: |х| = х при х ≥ 0, и |х| = -х при х ≤ 0. Например, |7| = 7, |- 0,23| = -(-0,23) = 0,23. Модуль комплексного числа z = a + ib - действительное число, равное √(a 2 + b 2).

Считают, что термин "модуль" предложил использовать английский математик и философ, ученик Ньютона, Роджер Котс. Готфрид Лейбниц тоже использовал эту функцию, которую называл "модулем" и обозначал: mol x. Общепринятое обозначение абсолютной величины введено в 1841 году немецким математиком Карлом Вейерштрассом. Для комплексных чисел это понятие ввели французские математики Огюстен Коши и Жан Робер Арган в начале XIX века. В 1903 году австрийский учёный Конрад Лоренц использовал эту же символику для длины вектора.

Норма. Э.Шмидт (1908).

Норма - функционал, заданный на векторном пространстве и обобщающий понятие длины вектора или модуля числа. Знак "нормы" (от латинского слово "norma" - "правило", "образец") ввел немецкий математик Эрхард Шмидт в 1908 году.

Предел. С.Люилье (1786), У.Гамильтон (1853), многие математики (вплоть до нач. ХХ в.)

Предел - одно из основных понятий математического анализа, означающее, что некоторая переменная величина в рассматриваемом процессе ее изменения неограниченно приближается к определенному постоянному значению. Понятие предела на интуитивном уровне использовалось ещё во второй половине XVII века Исааком Ньютоном, а также математиками XVIII века, такими как Леонард Эйлер и Жозеф Луи Лагранж. Первые строгие определения предела последовательности дали Бернард Больцано в 1816 году и Огюстен Коши в 1821 году. Символ lim (3 первые буквы от латинского слова limes - граница) появился в 1787 году у швейцарского математика Симона Антуана Жана Люилье, но его использование ещё не напоминало современное. Выражение lim в более привычном для нас оформлении первым использовал ирландский математик Уильям Гамильтон в 1853 году. Близкое к современному обозначение ввёл Вейерштрасс, однако вместо привычной нам стрелки он использовал знак равенства. Стрелка появилась в начале XX века сразу у нескольких математиков - например, у английского математика Годфрида Харди в 1908 году.

Дзета-функция, дзета-функция Римана . Б.Риман (1857).

Аналитическая функция комплексного переменного s = σ + it, при σ > 1 определяемая абсолютно и равномерно сходящимся рядом Дирихле:

ζ(s) = 1 -s + 2 -s + 3 -s + ... .

При σ > 1 справедливо представление в виде произведения Эйлера:

ζ(s) = Π p (1-p -s) -s ,

где произведение берётся по всем простым p. Дзета-функция играет большую роль в теории чисел. Как функция вещественного переменного, дзета-функция была введена в 1737 году (опубликовано в 1744 г.) Л. Эйлером, который и указал её разложение в произведение. Затем эта функция рассматривалась немецким математиком Л. Дирихле и, особенно успешно, российским математиком и механиком П.Л. Чебышевым при изучении закона распределения простых чисел. Однако наиболее глубокие свойства дзета-функции были обнаружены позднее, после работы немецкого математика Георга Фридриха Бернхарда Римана (1859), где дзета-функция рассматривалась как функция комплексного переменного; им же введено название "дзета-функция" и обозначение ζ(s) в 1857 году.

Гамма-функция, Γ-функция Эйлера. А.Лежандр (1814).

Гамма-функция - математическая функция, которая расширяет понятие факториала на поле комплексных чисел. Обычно обозначается Γ(z). Г-функция впервые введена Леонардом Эйлером в 1729 году; она определяется формулой:

Γ(z) = lim n→∞ n!·n z /z(z+1)...(z+n).

Через Г-функцию выражается большое число интегралов, бесконечных произведений и сумм рядов. Широко используется в аналитической теории чисел. Название "Гамма-функция" и обозначение Γ(z) предложено французским математиком Адриеном Мари Лежандром в 1814 году.

Бета-функция, В-функция, В-функция Эйлера. Ж.Бине (1839).

Функция двух переменных p и q, определяемая при p>0, q>0 равенством:

В(p, q) = 0 ∫ 1 х р-1 (1-х) q-1 dx.

Бета-функцию можно выразить через Γ-функция: В(p, q) = Γ(p)Г(q)/Г(p+q). Подобно тому как гамма-функция для целых чисел является обобщением факториала, бета-функция, в некотором смысле, является обобщением биномиальных коэффициентов.

С помощью бета-функции описываются многие свойства элементарных частиц , участвующих в сильном взаимодействии . Эта особенность подмечена итальянским физиком-теоретиком Габриэле Венециано в 1968 году. Это положило начало теории струн .

Название "бета-функция" и обозначение В(p, q) ввёл в 1839 году французский математик, механик и астроном Жак Филипп Мари Бине.

Оператор Лапласа, лапласиан. Р.Мёрфи (1833).

Линейный дифференциальный оператор Δ, который функции φ(х 1 , х 2 , ..., х n) от n переменных х 1 , х 2 , ..., х n ставит в соответствие функцию:

Δφ = ∂ 2 φ/∂х 1 2 + ∂ 2 φ/∂х 2 2 + ... + ∂ 2 φ/∂х n 2 .

В частности для функции φ(х) одного переменного оператор Лапласа совпадает с оператором 2-й производной: Δφ = d 2 φ/dx 2 . Уравнение Δφ = 0 обычно называют уравнением Лапласа; отсюда и произошли названия "оператор Лапласа" или "лапласиан". Обозначение Δ ввёл английский физик и математик Роберт Мёрфи в 1833 году.

Оператор Гамильтона, набла-оператор, гамильтониан. О.Хевисайд (1892).

Векторный дифференциальный оператор вида

∇ = ∂/∂x · i + ∂/∂y · j + ∂/∂z · k ,

где i , j , и k - координатные орты. Через оператор набла естественным способом выражаются основные операции векторного анализа, а так же оператор Лапласа.

В 1853 году ирландский математик Уильям Роуэн Гамильтон ввёл этот оператор и придумал для него символ ∇ в виде перевёрнутой греческой буквы Δ (дельта). У Гамильтона острие символа указывало налево, позже в работах шотландского математика и физика Питера Гатри Тэйта символ приобрёл современный вид. Гамильтон назвал этот символ словом «атлед» (слово «дельта», прочитанное наоборот). Позднее английские учёные, в том числе Оливер Хевисайд, стали называть этот символ «набла», по названию буквы ∇ в финикийском алфавите, где она и встречается. Происхождение буквы связано с музыкальным инструментом типа арфы, ναβλα (набла) по-древнегречески означает «арфа». Оператор получил название оператора Гамильтона, или оператора набла.

Функция. И.Бернулли (1718), Л.Эйлер (1734).

Математическое понятие, отражающее связь между элементами множеств. Можно сказать, что функция - это "закон", " правило" по которому каждому элементу одного множества (называемому областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений). Математическое понятие функции выражает интуитивное представление о том, как одна величина полностью определяет значение другой величины. Часто под термином "функция" понимается числовая функция; то есть функция которая ставит одни числа в соответствие другим. Долгое время математики задавали аргументы без скобок, например, так - φх. Впервые подобное обозначение использовал швейцарский математик Иоганн Бернулли в 1718 году. Скобки использовались только в случае многих аргументов, а также если аргумент представлял собой сложное выражение. Отголоском тех времён являются употребительные и сейчас записи sin x, lg x и др. Но постепенно использование скобок, f(x) , стало общим правилом. И основная заслуга в этом принадлежит Леонарду Эйлеру.

Равенство. Р.Рекорд (1557).

Знак равенства предложил уэльский врач и математик Роберт Рекорд в 1557 году; начертание символа было намного длиннее нынешнего, так как имитировало изображение двух параллельных отрезков. Автор пояснил, что нет в мире ничего более равного, чем два параллельных отрезка одинаковой длины. До этого в античной и средневековой математике равенство обозначалось словесно (например est egale ). Рене Декарт в XVII веке при записи стал использовать æ (от лат. aequalis ), а современный знак равенства он использовал чтобы указать, что коэффициент может быть отрицательным. Франсуа Виет знаком равенства обозначал вычитание. Символ Рекорда получил распространение далеко не сразу. Распространению символа Рекорда мешало то обстоятельство, что с античных времён такой же символ использовался для обозначения параллельности прямых; в конце концов было решено символ параллельности сделать вертикальным. В континентальной Европе знак "= " был введён Готфридом Лейбницем только на рубеже XVII-XVIII веков, то есть более чем через 100 лет, после смерти впервые использовавшего его для этого Роберта Рекорда.

Примерно равно, приблизительно равно. А.Гюнтер (1882).

Знак "≈ " ввёл в использование как символ отношения "примерно равно" немецкий математик и физик Адам Вильгельм Зигмунд Гюнтер в 1882 году.

Больше, меньше. Т.Гарриот (1631).

Эти два знака ввёл в использование английский астроном, математик, этнограф и переводчик Томас Гарриот в 1631 году, до этого использовали слова "больше" и "меньше".

Сравнимость. К.Гаусс (1801).

Сравнение - соотношение между двумя целыми числами n и m, означающее, что разность n-m этих чисел делится на заданное целое число а, называемое модулем сравнения; пишется: n≡m(mod а) и читается "числа n и m сравнимы по модулю а". Например, 3≡11(mod 4), так как 3-11 делится на 4; числа 3 и 11 сравнимы по модулю 4. Сравнения обладают многими свойствами, аналогичными свойствам равенств. Так, слагаемое, находящееся в одной части сравнения можно перенести с обратным знаком в другую часть, а сравнения с одним и тем же модулем можно складывать, вычитать, умножать, обе части сравнения можно умножать на одно и то же число и др. Например,

3≡9+2(mod 4) и 3-2≡9(mod 4)

Одновременно верные сравнения. А из пары верных сравнений 3≡11(mod 4) и 1≡5(mod 4) следует верность следующих:

3+1≡11+5(mod 4)

3-1≡11-5(mod 4)

3·1≡11·5(mod 4)

3 2 ≡11 2 (mod 4)

3·23≡11·23(mod 4)

В теории чисел рассматриваются методы решения различных сравнений, т.е. методы отыскания целых чисел, удовлетворяющих сравнениям того или иного вида. Cравнения по модулю впервые использовались немецким математиком Карлом Гауссом в его книге «Арифметические исследования» 1801 года. Он же предложил утвердившуюся в математике символику для сравнений.

Тождество. Б.Риман (1857).

Тождество - равенство двух аналитических выражений, справедливое для любых допустимых значений входящих в него букв. Равенство a+b = b+a справедливо при всех числовых значениях a и b, и поэтому является тождеством. Для записи тождеств в некоторых случаях с 1857 года применяется знак "≡ " (читается "тождественно равно"), автором которого в таком использовании, является немецкий математик Георг Фридрих Бернхард Риман. Можно записать a+b ≡ b+a.

Перпендикулярность. П.Эригон (1634).

Перпендикулярность - взаимное расположение двух прямых, плоскостей или прямой и плоскости, при котором указанные фигуры составляют прямой угол. Знак ⊥ для обозначения перпендикулярности ввёл в 1634 году французский математик и астроном Пьер Эригон. Понятие перпендикулярности имеет ряд обобщений, но всем им, как правило, сопутствует знак ⊥ .

Параллельность. У.Оутред (посмертное издание 1677 года).

Параллельность - отношение между некоторыми геометрическими фигурами; например, прямыми. Определяется по-разному в зависимости от различных геометрий; например, в геометрии Евклида и в геометрии Лобачевского. Знак параллельности известен с античных времён, его использовали Герон и Папп Александрийский. Сначала символ был похож на нынешний знак равенства (только более протяжённый), но с появлением последнего, во избежание путаницы, символ был повёрнут вертикально ||. В таком виде он появился впервые в посмертном издании работ английского математика Уильяма Оутреда в 1677 году.

Пересечение, объединение. Дж.Пеано (1888).

Пересечение множеств - это множество, которому принадлежат те и только те элементы, которые одновременно принадлежат всем данным множествам. Объединение множеств - множество, содержащее в себе все элементы исходных множеств. Пересечением и объединением называются и операции над множествами, ставящие в соответствие некоторым множествам новые по указанным выше правилам. Обозначаются ∩ и ∪, соответственно. Например, если

А= {♠ ♣ } и В= {♣ ♦ },

То

А∩В={♣ }

А∪В={♠ ♣ ♦ } .

Содержится, содержит. Э.Шрёдер (1890).

Если А и В - два множества и в А нет элементов, не принадлежащих В, то говорят что А содержится в В. Пишут А⊂В или В⊃А (В содержит А). Например,

{♠}⊂{♠ ♣}⊂{♠ ♣ ♦ }

{♠ ♣ ♦ }⊃{ ♦ }⊃{♦ }

Символы "содержится" и "содержит" появились в 1890 году у немецкого математика логика Эрнста Шрёдера.

Принадлежность. Дж.Пеано (1895).

Если а - элемент множества А, то пишут а∈А и читают "а принадлежит А". Если а не является элементом множества А, пишут а∉А и читают "а не принадлежит А". Вначале отношения "содержится" и "принадлежит" ("является элементом") не различали, но со временем эти понятия потребовали разграничения. Знак принадлежности ∈ впервые стал использовать итальянский математик Джузеппе Пеано в 1895 году. Символ ∈ происходит от первой буквы греческого слова εστι - быть.

Квантор всеобщности, квантор существования. Г.Генцен (1935), Ч.Пирс (1885).

Квантор - общее название для логических операций, указывающих область истинности какого-либо предиката (математического высказывания). Философы давно обращали внимание на логические операции, ограничивающие область истинности предиката, однако не выделяли их в отдельный класс операций. Хотя кванторно-логические конструкции широко используются как в научной, так и в обыденной речи, их формализация произошла только в 1879 году, в книге немецкого логика, математика и философа Фридриха Людвига Готлоба Фреге «Исчисление понятий». Обозначения Фреге имели вид громоздких графических конструкций и не были приняты. Впоследствии было предложено множество более удачных символов, но общепринятыми стали обозначения ∃ для квантора существования (читается "существует", "найдётся"), предложенное американским философом, логиком и математиком Чарльзом Пирсом в 1885 году, и ∀ для квантора всеобщности (читается "любой", "каждый", "всякий"), образованное немецким математиком и логиком Герхардом Карлом Эрихом Генценом в 1935 году по аналогии с символом квантора существования (перевёрнутые первые буквы английских слов Existence (существование) и Any (любой)). Например, запись

(∀ε>0) (∃δ>0) (∀x≠x 0 , |x-x 0 |<δ) (|f(x)-A|<ε)

читается так: "для любого ε>0 существует δ>0 такое, что для всех х, не равных х 0 и удовлетворяющих неравенству |x-x 0 |<δ, выполняется неравенство |f(x)-A|<ε".

Пустое множество. Н.Бурбаки (1939).

Множество, не содержащее ни одного элемента. Знак пустого множества был введён в книгах Николя Бурбаки в 1939 году. Бурбаки - коллективный псевдоним группы французских математиков, созданной в 1935 году. Одним из участников группы Бурбаки был Андре Вейль - автор символа Ø.

Что и требовалось доказать. Д.Кнут (1978).

В математике под доказательством понимается последовательность рассуждений, построеных на определённых правилах, показывающая, что верно некоторое утверждение. Со времён эпохи Возрождения окончание доказательства обозначалось математиками сокращением "Q.E.D.", от латинского выражения "Quod Erat Demonstrandum" - "Что и требовалось доказать". При создании системы компьютерной вёрстки ΤΕΧ в 1978 году американский профессор информатики Дональд Эдвин Кнут использовал символ: заполненный квадрат, так называемый "символ Халмоша", по имени американского математика венгерского происхождения Пола Ричарда Халмоша. Сегодня завершение доказательства как правило обозначают Символом Халмоша. В качестве альтернативы используют и другие знаки: пустой квадрат, правый треугольник, // (две косых черты), а также русскую аббревиатуру "ч.т.д.".