Основы прекращения горения на пожаре конспект. Литература: учебник «Пожарная тактика», справочник ртп Развернутый план занятий. Вид пожарной нагрузки

ВНИМАНИЕ: Вы смотрите текстовую часть содержания конспекта, материал доступен по кнопке Скачать

Пожар и его развитие

Понятие пожара.

Пожар представляет собой сложный физико-химический процесс, включающий помимо горения явления массо- и теплообмена, развивающиеся во времени и пространстве.

Эти явления взаимосвязаны и характеризуются параметрами пожара: ско­ростью выгорания, температурой и т. д. и определяются рядом условий, многие из которых носят случайный характер.

Явления массо- и теплообмена на­зывают общими явлениями, характер­ными для любого пожара независимо от его размеров и места возникнове­ния. Только ликвидация горения мо­жет привести к их прекращению. При пожаре процесс горения в течение достаточно большого промежутка вре­мени не управляется человеком. След­ствием этого процесса являются боль­шие материальные потери.

Общие явления могут привести к возникновению частных явлений, т. е. таких, которые могут или не могут про­исходить на пожарах. К ним относят: взрывы, деформацию и обрушение тех­нологических аппаратов и устано­вок, строительных конструкций, вски­пание или выброс нефтепродуктов из резервуаров и другие явления.

Возникновение и протекание част­ных явлений возможно лишь при соз­дании на пожарах определенных благоприятных для этого условий. Так, деформация или обрушение стро­ительных конструкций происходят лишь в зданиях или на открытых про­изводственных установках, чаще при большой продолжительности пожа­ров; вскипание или выброс нефтепро­дуктов лишь при горении темных и обводненных нефтепродуктов или при наличии подтоварной воды (водяной подушки) и т.д.

Пожар сопровождается еще и социальными явлениями, наносящими обществу не только материальный, но и моральный ущерб. Гибель людей, термические травмы и отравления токсичными продуктами горения, воз­никновение паники на объектах с массовым пребыванием людей и т. п.– тоже явления, происходящие на по­жарах. И они тоже частные, так как вторичны от общих явлений, сопро­вождающих пожар. Это особая группа явлений, вызывающая значительные психологические перегрузки и даже стрессовые состояния у людей.

Статистический учет пожаров, ве­дущийся в нашей стране и других развитых странах, позволяет выявить примерное распределение ущерба и гибели людей по зданиям различного назначения от опасных факторов пожара, Под опасным фактором пожа­ра понимают фактор пожара, воз­действие которого приводит к трав­мам, отравлению или гибели челове­ка, а также к уничтожению (по­вреждению) материальных ценностей.

Опасными факторами пожара (ОФП), воздействующими на людей, являются:

  • открытый огонь и искры;
  • повышенная температура окружаю­щей среды, предметов и т. п.;
  • токсичные продукты горения, дым;
  • пониженная концентрация кислорода;
  • падающие части строительных конст­рукций, агрегатов, установок и т.п.;
  • опасные факторы взрыва (ГОСТ 12.1. 004–85).

Гибель людей в основном происхо­дит на ранних стадиях развития пожа­ра преимущественно от удушья. Чаще всего на пожаре погибают дети, пожилые люди и инвалиды.

Рост числа пожаров, величина материального ущерба и человеческих жертв определяются концентрацией производства, увели­чением производительности ранее из­вестных и созданием новых, опасных в пожарном отношении технологий, увеличением плотности населения, уровнем оснащенности пожарных ча­стей, несвоевременностью принятия мер и т. д.

Таким образом, на пожарах проис­ходят различные явления, взаимо­связанные друг с другом. Они проте­кают на основе общих физико-химических и социально-экономичес­ких законов, характеризуются соответ­ствующими параметрами, знание ко­торых позволяет определить количест­венные характеристики каждого явле­ния, необходимые для качественной оценки обстановки на пожаре (фор­мирования вывода на основе обобще­ния и анализа сведений о явлениях, сопровождающих пожар) и принятия оптимального решения на его тушение. С целью детального изучения пожа­ров и разработки тактики борьбы с ними все пожары классифицируются по группам, классам и видам. Класси­фикация их производится на основе распределения по признакам сходства и различия.

Классификация пожаров.

По условиям массо- и теплообмена с окружающей средой все пожары разделены на две большие группы – на открытом пространстве и в ограждениях .

В зависимости от вида горящих материалов и веществ пожары разделены на классы А, В, С, D , Е, F и подклассы А1, А2, В1, В2, Д1, Д2 и ДЗ .

К пожарам класса А относится горение твёрдых веществ. При этом, если горят тлеющие вещества, например древесина, бумага, текстильные изделия и т.п., то пожары относятся к подклассу А1; неспособные тлеть, например пластмассы, – к подклассу А2.

К классу В относятся пожары легковоспламеняющихся и горючих жидкостей. Они будут относиться к подклассу В1, если жидкости нерастворимы в воде (бензин, дизтопливо, нефть и др.) и к подклассу В2 – растворимые в воде (например, спирты).

Если горению подвержены газы, например водород, пропан и др., то пожары относятся к классу С , при горении же металлов – к классу Д . Причём подкласс Д1 выделяет горение лёгких металлов, например алюминия, магния и их сплавов; Д2– щелочных и других подобных металлов, например натрия и калия; ДЗ – горение металлосодержащих соединений, например металлоорганических, или гидридов.

К классу Е относится горение материалов в электрических установках под напряжением.

К классу F относятся пожары ядерных материалов, радиоактивных веществ и радиоактивных отходов.

По признаку изменения площади горения пожары можно разделить на распространяющиеся и нераспространяющиеся .

Классифицируют пожары по размерам и материальному ущербу, по продолжительности и другим признакам сходства или различия.

Кроме того, в классификации следует отдельно выделить подгруппу пожаров на открытых пространствах – массовый пожар , под которым понимают совокупность отдельных и сплошных пожаров в населённых пунктах, крупных складах горючих материалов и на промышленных предприятиях. Под отдельным пожаром подразумевается пожар, возникающий в отдельном здании или сооружении. Одновременно интенсивное горение преобладающего числа зданий и сооружений на данном участке застройки принято называть сплошным пожаром . При слабом ветре или при его отсутствии массовый пожар может перейти в огневой шторм.

Огневой шторм – это особая форма пожара, характеризующаяся образованием единого гигантского турбулентного факела пламени с мощной конвективной колонкой восходящих потоков продуктов горения и нагретого воздуха и притоком свежего воздуха к границам огневого шторма со скоростью не менее 14 – 15 м/с.

Пожары в ограждениях можно разделить на два вида: пожары, регулируемые воздухообменом, и пожары, регулируемые пожарной нагрузкой.

Под пожарами, регулируемыми вентиляцией, понимают пожары, которые протекают при ограниченном содержании кислорода в газовой среде помещения и избытке горючих веществ и материалов. Содержание кислорода в помещении определяется условиями его вентиляции, т.е. площадью приточных отверстий или расходом воздуха, поступающего в помещение пожара с помощью механических систем вентиляции.

Под пожарами, регулируемыми пожарной нагрузкой, понимают пожары, которые протекают при избытке кислорода воздуха в помещении и развитие пожара зависит от пожарной нагрузки. Эти пожары по своим параметрам приближаются к пожарам на открытом пространстве.

По характеру воздействия на ограждения пожары подразделяются на локальные и объёмные.

Локальные пожары характеризуются слабым тепловым воздействием на ограждения и развиваются при избытке воздуха, необходимого для горения, и зависят от вида горючих веществ и материалов, их состояния и расположения в помещении.

Объёмные пожары характеризуются интенсивным тепловым воздействием на ограждения. Для объёмного пожара, регулируемого вентиляцией, характерно наличие между факелом пламени и поверхностью ограждения газовой прослойки из дымовых газов, процесс горения происходит при избытке кислорода воздуха и приближается к условиям горения на открытом пространстве. Для объёмного пожара, регулируемого пожарной нагрузкой, характерно отсутствие газовой (дымовой) прослойки между пламенем и ограждением.

Объёмные пожары в ограждениях принято называть открытыми пожарами, а локальные пожары, пожары, протекающие при закрытых дверных и оконных проёмах, – закрытыми.

Основные параметры пожара.

Каждый пожар представляет собой единственную в своем роде ситуацию, определяемую различными событиями и явлениями, носящими случайный харак-тер, например изменение направления и скорости ветра во время пожара и т.п. Поэтому точно предсказать развитие пожара во всех деталях не представляется возможным. Однако пожары обладают общими закономерностями, что позволяет построить аналитическое описание общих явлений пожаров и их параметров.

Основные явления, сопровождающие пожар – это процессы горения, газо- и теплообмена. Они изменяются во времени, пространстве и характеризуются параметрами пожара. Пожар рассматривается как открытая термодинамическая система, обменивающаяся с окружающей средой веществами и энергией.

Рассмотрим основные параметры, характеризующие процесс горения.

К основным факторам, характеризующим возможное развитие процесса горения на пожаре, относятся:

  • массовая скорость выгорания;
  • линейная скорость распространения горения (пожара);
  • площадь пожара, площадь поверхности горящих материалов;
  • температура пламени;
  • интенсивность выделения тепла;
  • дымообразование;
  • концентрация дыма.
  • Под пожарной нагрузкой понимают количество теплоты, отнесённое к единице поверхности пола, которое может выделиться в помещении или здании на пожаре.

    Под скоростью выгорания понимают потерю массы материала (вещества) в единицу времени при горении. Процесс термического разложения сопровождается уменьшением массы вещества и материалов, которая в расчёте на единицу времени и единицу площади горения квалифицируется как массовая скорость выгорания, кг/(м 2 ×с).

    Линейная скорость распространения горения (пожара) представляет собой физическую величину, характеризуемую поступательным движением фронта пламени в данном направлении в единицу времени. Она зависит от вида и природы горючих веществ и материалов, от начальной температуры, способности горючего к воспламенению, интенсивности газообмена на пожаре, плотности теплового потока на поверхности веществ и материалов и других факторов.

    Под температурой пожара в ограждениях понимают среднеобъёмную температуру газовой среды в помещении, под температурой пожара на открытых пространствах – температуру пламени . Температура пожаров в ограждениях, как правило, ниже, чем на открытых пространствах.

    Одним из главных параметров, характеризующих процесс горения, является интенсивность выделения тепла при пожаре. Это величина, равная по значению теплу, выделяющемуся при пожаре за единицу времени. Она определяется массовой скоростью выгорания веществ и материалов и их теплового содержания. На интенсивность тепловыделения влияют содержание кислорода и температура среды, а содержание кислорода зависит от интенсивности поступления воздуха в помещение при пожарах в ограждениях и в зону пламенного горения при пожарах на открытых пространствах.

    Если горение на пожаре не ограничивается притоком воздуха, интенсивность тепловыделения зависит от площади поверхности материала, охваченной горением. Площадь поверхности вещества или материала, охваченная горением, может оставаться в процессе пожара постоянной величиной или изменяется со временем.

    При пожаре выделяются газообразные, жидкие и твёрдые вещества. Их называют продуктами горения, т.е. веществами, образовавшимися в результате горения. Они распространяются в газовой среде и создают задымление.

    Дым – это дисперсная система из продуктов горения и воздуха, состоящая из газов, паров и раскалённых твёрдых частиц. Объём выделившегося дыма, его плотность и токсичность зависят от свойств горящего материала и от условий протекания процесса горения.

    Под дымообразованием на пожаре принимают количества дыма, м 3 /с, выделяемого со всей площади пожара.

    Концентрация дыма – это количество продуктов горения, содержащихся в единице объёма помещения. Её можно выразить количеством вещества, г/м 3 , г/л, или в объёмных долях.

    Экспериментальным путём установлена зависимость видимости от плотности дыма, например, если предметы при освещении их групповым фонарём с лампочкой в 21 Вт видны на расстоянии до 3 метров (содержание твёрдых частичек углерода 1,5 г/м 3) – дым оптически плотный; до 6 метров (0,6-1,5 г/м 3 твёрдых частичек углерода) – дым средней оптической плотности; до 12 метров (0,1- 0,6 г/м твёрдых частичек углерода) – дым оптически слабый.

    Условия прекращения горения. Принципы прекращения горения.

    Процесс горения – быстро протекающие химические реакции окисления и физические явления, без которых горение невозможно, сопровождающиеся выделением тепла и свечением раскалённых продуктов горения с образованием пламени.

    Условия горения:

    • наличие горючего вещества;
    • поступление окислителя в зону химических реакций;
    • непрерывное выделение тепла, необходимого для поддержания горения.

    Пожар развивается на определённой площади или в объёме и может быть условно разделён на три зоны, не имеющих, однако, чётких границ: горения, теплового воздействия и задымления.

    Зона горения.

    Зоной горения называется часть пространства, в котором происходит подготовка горючих веществ к горению (подогрев, испарение, разложение) и их горение. Она включает в себя объём паров и газов, ограниченный собственно зоной горения и поверхностью горящих веществ, с которой пары и газы поступают в объём зоны горения. При беспламенном горении и тлении, например, хлопка, кокса, войлока, торфа и других твёрдых горючих веществ и материалов, зона горения совпадает с поверхностью горения. Иногда зона горения ограничивается конструктивными элементами – стенами здания, стенками резервуаров, аппаратов и т.д. Характерные случаи пожаров и зоны горения на них показаны на рис. 3.1. Зона горения является теплогенератором на пожаре, так как именно здесь выделяется всё тепло и развивается самая высокая температура. Однако процесс тепловыделения происходит не во всей зоне, а во фронте горения, и здесь же развиваются максимальные температуры. Внутри факела пламени температура значительно ниже, а у поверхности горючего материала ещё ниже. Она близка к температуре разложения для твёрдых горючих веществ и материалов и к температуре кипения жидкости для ЛВЖ и ГЖ. Схемы распределения температур в факеле пламени при горении газообразных, жидких и твёрдых веществ показаны на рис. 3.2.

    Зоны горения на пожарах: а – при горении жидкости в резервуаре; б – при горении внутри зданий; в – при горении угля.

    Распределение температур в пламени при горении:

    а – газообразных веществ; б – жидкостей; в – твёрдых материалов.

    Зона теплового воздействия.

    Зоной теплового воздействия называется часть пространства, примыкающая к зоне горения, в котором тепловое воздействие приводит к заметному изменению материалов и конструкций и делает невозможным пребывание в нём людей без специальной тепловой защиты (теплозащитных костюмов, отражательных экранов, водяных завес и т.п.).

    Если в зоне теплового воздействия находятся горючие вещества или материалы, то под действием тепловых потоков происходит их подготовка к горению, создаются условия для их воспламенения и дальнейшего распространения огня. С распространением зоны горения, границы зоны теплового воздействия расширяются, и этот процесс повторяется непрерывно.

    Тепло из фронта горения распространяется в окружающее пространство, как конвекцией, так и излучением. Конвективные потоки горячих газов направлены преимущественно вверх, а количество тепла, переносимое ими в единицу времени, пропорционально градиенту температур между газом-теплоносителем и тепловоспринимающей средой, и коэффициенту теплообмена.

    Зона теплового воздействия на внутренних пожарах будет меньше по размерам, чем на открытых, так как стены здания играют роль экранов, а площадь проёмов, через которые возмож­но излучение, невелика. Кроме того, дым, который выделяется на внутренних пожарах, резко снижает интенсивность излучения, поскольку является хорошей поглощающей средой. Направления передачи тепла в зоне теплового воздействия на открытых и внутренних пожарах также различны.

    На открытых пожарах верхняя часть зоны теплового воздействия энергетически более мощная, поскольку конвективные токи и излучение совпадают по направлению. На внутренних пожарах направление передачи тепла излучением может не совпадать с передачей тепла конвекцией, поэтому зона теплового воздействия может состоять из участков, где действует только излучение или только конвекция или где оба вида тепловых потоков действуют совместно.

    При ликвидации горения на пожарах необходимо знать границы зоны теплового воздействия. Ближней границей зоны теплового воздействия является зона горения, а дальняя определяется по двум показателям: или по термодинамической температуре в данной точке пространства или по интенсивности лучистого теплового потока. По температуре граница зоны теплового воздействия принимается в той части пространства, где температура среды превышает 60 ÷ 70°С. При данной температуре невозможно длительное пребывание людей и выполнение ими активных действий по тушению пожара.

    За дальнюю границу зоны теплового воздействия по интенсивности лучистого теплового потока принимают такое удаление от зоны горения, где лучистое тепло, воздействуя на не­защищенные части тела человека (лицо, руки) вызывают болевое ощущение не мгновенно, а через промежуток времени, соизмеримый с оперативным временем, т.е. временем, необходимым для активного воздействия пожарного, вооруженного средствами тушения, на основные параметры пожара. Численную величину этого времени следует определять экспериментально на характерных реальных пожарах. Для внутренних пожаров в зданиях при средней интенсивности их развития, при современном вооружении участника тушения пожара (например, стволом тонкораспылённой воды, с раствором смачивателя или загустителя) это время условно мож­но принять равным 15 сек. Тогда, по экспериментальным данным, за дальнюю границу зоны теплового воздействия можно условно принять интенсивность лучистого потока примерно 3500 Вт/м 2 .

    Зона задымления.

    Зоной задымления называется часть про­странства, примыкающая к зоне горения и заполненная дымовы­ми газами в концентрациях, создающих угрозу жизни и здо­ровью людей или затрудняющих действия пожарных подразделе­ний.

    Зона задымления может частично включать в себя зону го­рения и всю или часть зоны теплового воздействия. Как пра­вило, зона задымления – самая большая часть пространства на пожаре. Это объясняется тем, что дым представляет собой аэрозоль (смесь воздуха с газообразными продуктами полного и непол­ного горения и мелкодисперсной твёрдой и жидкой фазой), по­этому он легко вовлекается в движение даже слабыми конвек­тивными потоками, а при наличии мощных конвективных потоков, которые наблюдаются на пожарах, дым разносится на значитель­ные расстояния.

    Дым определяется как совокупность газообразных продуктов горения органических материалов, в которых рассеяны небольшие твёрдые и жидкие частицы. Это определение шире, чем большинство распространённых определений дыма.

    Сочетание сильной задымлённости и токсичности представляет наибольшую угрозу тем, кто находится в здании, охваченном пожаром. Статистические данные позволяют сделать вывод о том, что более 50% всех смертельных исходов при пожарах можно отнести за счёт того, что люди находились в среде, заполненной дымом и токсичными газами.

    За небольшими исключениями, дым образуется на всех пожарах. Дым уменьшает видимость, тем самым он может задержать эвакуацию людей, находящихся в помещении, что может привести к воздействию на них продуктов сгорания, причем в течение недопустимо длительного периода времени. При этих обстоятельствах люди могут быть поражены вредными составляющими дыма, даже находясь в мес­тах, удалённых от очага пожара. Влияние пониженного содержания кислорода и вдыхаемых, горячих газов становится весьма значительными лишь поблизости от пожара.

    Особое значение зона задымления и изменение её параметров во времени имеет на внутренних пожарах, при пожарах в зданиях и помещениях.

    На открытых пожарах дым, как правило, поднимается выше зоны действия людей и редко оказывает большое влияние на выполнение тактико-технических действий. Положение зоны задымления, зависит в основном от размеров площади пожара и метеорологических условий.

    При горении в зоне реакции (тонкий светящийся слой пламени) выделяется теплота Q. Часть этого тепла передается внутрь зоны горения Q Г, а другая в окружающую среду Q СР. Внутри зоны горения теплота расходуется на нагрев горючей системы, способствует продолжению процесса горения, а в окружающей среде тепловые потоки воздействуют на горючие материалы, конструкции и при определённых условиях могут вызвать воспламенение их или деформацию.

    При установившемся горении в зоне реакции существует тепловое равновесие, которое выражается формулой:

    Q = Q Г + Q СР

    Q – общее количество теплоты, выделенной в зоне реакции горения, кДж.

    Каждому тепловому равновесию соответствует определённая температура горения Т Г, которая иначе называется температурой теплового равновесия . При этом состоянии скорость тепловыделения равна скорости теплоотдачи. Данная температура не является постоянной, она изменяется с изменением скоростей тепловыделения и теплоотдачи.

    Задача подразделений пожарной охраны заключается в том, чтобы конкретными действиями добиться такого понижения температуры в зоне реакции, при которой горение прекратится.

    Ликвидация горения – это воздействие на тепловыделение и теплоотдачу. С уменьшением тепловыделения или с уменьшением теплоотдачи снижается температура и скорость реакции. При введении в зону горения огнетушащих веществ температура может достигнуть значения, при котором горение прекращается. Минимальная температура горения, ниже которой скорость теплоотвода превышает скорость тепловыделения и горение прекращается, называется температурой потухания .

    В процессе тушения пожара условия потухания создаются: охлаждением зоны горения или горящего вещества, изоляцией реагирующих веществ от зоны горения, разбавлением реагирующих веществ, химическим торможением реакции горения.

    В практике тушения пожаров чаще всего используют сочетание приведённых принципов, среди которых один является в ликвидации горения доминирующим, а остальные – способствующими.

    Вид и характер выполнения действий по тушению пожара в определенной последовательности , направленных на создание условия прекращение горения, называют способом тушения пожара.

    Способы тушения пожаров (прекращения горения) по принципу, на котором основано условие прекращения горения, подразделяются на четыре группы:

    1) способы, основанные на принципе охлаждения зоны горения или горящего вещества;

    2) способы, основанные на принципе изоляции реагирующих веществ от зоны горения;

    3) способы, основанные на принципе разбавления реагирующих веществ;

    4) способы, основанные на принципе химического торможения реакции горения .

    Способы тушения пожара (прекращения горения) представлены на рис. 3.4.

    Каждый из способов прекращения горения можно выполнить различными приёмами или их сочетанием. Например, создание изолирующего слоя на горящей поверхности легковоспламеняющейся жидкости может быть достигнуто подачей пены через слой горючего, с помощью пеноподъёмников, навесными струями и т.п.

    Классификация огнетушащих веществ.

    Огнетушащие средства по доминирующему принципу прекраще­ния горения подразделяются на четыре группы:

    • охлаждающего действия;
    • изо­лирующего действия;
    • разбавляющего действия;
    • ингибирующего действия .

    Наиболее распространённые огнетушащие вещества, относящие­ся к конкретным принципам прекращения горения, приведены ниже.

    Огнетушащие вещества, применяемые для тушения пожаров

    Огнетушащие вещества ох­лаждения Вода, раствор воды со смачивателем, твёр­дый диоксид углерода (углекислота в снегообразном виде), водные растворы солей.
    Огнетушащие вещества изо­ляции Огнетушащие пены: химическая, воздушно-механическая, компрессионная пена (от АПСТ NATISK); Огнетушащие порошковые со­ставы (ОПС); ПС, ПСБ-3, СИ-2, П-1А, ПИРАНТ-А, ВЕКСОН-АВС; негорючие сыпучие вещества: песок, земля, шлаки, флюсы, графит; листовые материалы, покрывала, щиты.
    Огнетушащие вещества раз­бавления Инертные газы: диоксид углерода, азот, ар­гон, дымовые газы, водяной пар, тонкораспылённая вода, газоводяные смеси, продук­ты взрыва ВВ, летучие ингибиторы, образую­щиеся при разложении галоидоуглеродов.
    Огнетушащие вещества хи­мического торможения реакции горения Галоидоуглеводороды бромистый этил, хладоны 114В2 (тетрафтордибромэтан) и 13В1 (трифторбромэтан); составы на основе галоидо-углеводородов 3,5; 4НД; 7; БМ, БФ-1,БФ-2; водобромэтиловые растворы (эмульсии); огнетушащие порошковые составы.

    Горение – экзотермическая реакция окисления горящего вещества, сопровождающаяся хотя бы одним из 3-х факторов:

    • пламенем
    • свечением
    • выделением дыма

    Треугольник горения

    Необходимы 3 условия для горения:

    • Горючие вещества – ГВ
    • Окислитель -О2
    • Источник зажигания – ИЗ.

    В зависимости от среды горения различают 2 вида горения:

    • Пламенное – горение вещества и материалов сопровождается пламенем. (зона горения над поверхностью ГВ). При пожаре горят большинство ГВ, способные при нагреве выделять горючие продукты, такие как (древесина, ткани, нефтепродукты, каучук, резина, пластмассы и т.д.);
    • Беспламенное – в виде тления накала ГВ горение на поверхности. (древесный уголь, кокс, атрацит, сажа, торф, и др., не способные при нагреве выделять летучие продукты);
    • Дым – аэрозоль (дисперсная система) образуемый жидкими или твердыми продуктами неполного возгорания ГВ (СО, С, сажа).

    1) пожары твердых горючих веществ и материалов (А);

    2) пожары горючих жидкостей или плавящихся твердых веществ и материалов (В);

    3) пожары газов (С);

    4) пожары металлов (D);

    5) пожары горючих веществ и материалов электроустановок, находящихся под напряжением (Е);

    6) пожары ядерных материалов, радиоактивных отходов и радиоактивных веществ (F).

    Под распространяющимися пожарами понимают такие пожары, у которых происходит увеличение геометрических размеров (длины, высоты, ширины, радиуса) во времени.

    Под нераспространяющимися пожарами понимают такие пожары, у которых геометрические размеры остаются неизменными во времени.

    Подземными пожарами называются пожары, расположенные ниже уровня земли, на любой глубине.

    Под наземными пожарами понимают такие пожары, которые находятся на высоте, достигаемой при помощи .

    Под средневысотными пожарами понимают пожары, расположенные выше уровня поверхности земли, то есть до высоты, которая достигается при использовании пожарных автолестниц и подъемников.

    Высотными пожарами называются пожары, расположенные выше 30 метров от уровня поверхности земли.

    На водных пространствах (акваториях ) : , а также нефтегазодобывающих платформ и др.

    Пространство, в котором развивается пожар, можно условно разделить на три зоны:

    • зону горения;
    • зону теплового воздействия;
    • зону задымления;
    • горючее вещество.

    Зона горения характеризуется геометрическими и физическими параметрами: площадью, объемом, высотой, горючей загрузкой, скоростью выгорания веществ (линейная, массовая, объемная) и др.

    Зона теплового воздействия – часть, примыкающая к зоне горения. В этой части происходит процесс теплообмена между поверхностью пламени и окружающими строительными конструкциями, материалами. Передача тепла осуществляется конвекцией, излучением, теплопроводностью. Границы зоны проходят там, где тепловое воздействие приводит к заметному изменению состояния материалов, конструкций и создает невозможные условия для пребывания людей без средств тепловой защиты.

    Зона задымления – пространство, которое заполняется продуктами сгорания (дымовыми газами) в концентрациях, создающих угрозу для жизни и здоровья людей, затрудняющих действия пожарных подразделений при работе на пожарах.

    Опасные факторы пожара

    ОПАСНЫЙ ФАКТОР ПОЖАРА – фактор пожара, воздействие которого на людей и (или) материальные ценности может привести к ущербу.

    Опасными факторами, воздействующими на людей и материальные ценности, являются:

    1. пламя и искры;
    2. повышенная температура окружающей среды;
    3. токсичные продукты горения и термического разложения;
    4. пониженная концентрация кислорода.

    К вторичным проявлениям опасных факторов пожара, воздействующим на людей и материальные ценности, относятся:

    • осколки, части разрушенных аппаратов, агрегатов, установок, конструкций;
    • радиоактивные и токсичные вещества и материалы, вышедшие из разрушенных аппаратов и установок;
    • электрический ток, возникший в результате выноса высокого напряжения на токопроводящие части конструкций, аппаратов, агрегатов;
    • опасные факторы взрыва по ГОСТ 12.1.010, происшедшего в следствие пожара.

    Читайте в отдельной статье больше информации:

    Условия и механизм прекращения горения

    Для прекращения горения необходимо либо снизить тепловыделение в зоне горения фронта пламени, либо увеличить теплоотвод из зоны горения.

    Это может быть достигнуто различными путями:

    Охлаждением поверхности горючего вещества или материала;

    Изоляцией зоны горения от источника горючих паров и окислителя (например, герметизацией либо горящего вещества, либо объема, в котором протекает процесс горения);

    Разбавлением горючих газов, паров и окислителя, поступающих в зону горения инертными газами;

    Ингибированием процессов горения (т.е. введением в исходную горючую смесь или в зону горения ингибиторов цепных реакций окисления).

    Огнетушащее вещество (ОТВ) – это вещество, обладающее физико-химическими свойствами, позволяющими создать условия для прекращения горения.

    Применяемые огнетушащие вещества и способы тушения

    Основные характеристики огнетушащих веществ

    Огнетушащая эффективность – это минимальное количество ОТВ, израсходованное на тушение модельного очага пожара данного класса. Для объемного способа тушения огнетушащая эффективность различных ОТВ зависит от многих факторов: природы горючего вещества, условий горения, свойств ОТВ, способов его применения и т.д.

    Интенсивность подачи огнетушащего вещества (I) – это расход ОТВ во времени на единицу защищаемой поверхности или объема. Размерность при поверхностном способе тушения – , для объемного способа – , для линейного способа . I = Qотв / (П · τт · 60);

    Удельный расход ОТВ (qуд) – это количество огнетушащего вещества (кг, л), которое требуется на единицу расчетного параметра пожара (м3, м2, м) для его успешного тушения:

    qуд = Q отв / Пп.

    Краткая характеристика, область применения огнетушащих веществ.

    Вода – основное огнетушащие вещества охлаждения, наиболее доступные и универсальное.

    Вода отнимает от горящих материалов и продуктов горения большое количество теплоты. При этом она частично испаряется и превращается в пар.

    (из 1л воды образуется 1700 л пара). Благодаря чему происходит разбавление реагирующих веществ, что само по себе способствует прекращению горения, а также вытеснению воздуха из зоны очага пожара.

    Недостатки воды:

    • Электропроводна
    • Сравнительно высокая т-ра замерзания
    • Большая плотность (нельзя применять при тушении нефтепродуктов)
    • Низкий коэффициент использования в виде компактных струй.

    Углекислота – тяжелея воздуха в 1,5 раза, без запаха.

    • Их 1 кг кислоты образуется 500 л газа.
    • Теплота испарения при -78,5 0С.
    • Не электропроводна.
    • Не взаимодействует с горючими веществами.

    ВМП – воздушно механическая пена.. – образуется из раствора воды с пенообразователем ПО-1.

    Обладает: стойкостью, дисперстностью, кратностью, вязкостью, охлаждающими и изолирующими свойствами.

    Может быть:

    • низкой кратности К < 10,
    • средний кратности К = 100,
    • высокой кратности К < 200.

    Подается из стволов: СВП-4; 8; 12 м3/мин

    ГПС-100; 600; 2000 л/мин.

    Недостаток: более электропроводна чем вода.

    Водяной пар нашел широкое применение в стационарных установках тушения в помещениях с ограниченным количеством проемов, объемом до 500 м3 (сушильные и окрасочные камеры, трюмы судов, насосные по перекачке нефтепродуктов и.т.п.), на технологических установках для наружного пожаротушения, на объектах химической и нефтеперерабатывающей промышленности.

    Тонко распыленная вода (диаметр капель меньше 100 мк) – для получения ее применяют насосы, создающие давление свыше 2-3 МПа (20-30 атм) и специальные стволы распылители.

    Диоксид углерода применяется для тушения пожаров электрооборудования и электроустановок, в библиотеках, книгохранилищах и архивах и т.п. Однако им, как и твердый углекислотой, категорически запрещено тушение щелочных и щелочно-земельных материалов.

    Азот главным образом применяется в стационарных установках пожаротушения для тушения натрия, калия, бериллия и кальция. Для тушения магния. Лития, алюминия, циркония применяют аргон, а не азот. Диоксид углерода и азот хорошо тушат вещества, горящие пламенем (жидкости и газы), плохо тушат вещества и материалы, способные тлеть (древесина, бумага). К недостаткам диоксида углерода и азота как огнетушащих веществ следует отнести их высокие огнетушащие концентрации и отсутствие охлаждающего эффекта при тушении.

      прекращение поступления в зону горения новых порций паров горючего;

      прекращение поступления окислителя (кислорода воздуха);

      уменьшение теплового потока от факела пламени;

      уменьшение концентрации активных частиц (радикалов) в зоне горения.

    Таким образом, возможными способами тушения огня могут быть:

      снижение температуры очага горения ниже температуры самовоспламенения или температуры вспышки горючего путем введения в пламя веществ, забирают на себя некоторое количество теплоты (классическим веществом является вода);

      уменьшение количества паров горючего, поступающего в зону горения, путем изоляции горючего вещества от воздействия факела очага горения (например, при помощи плотного покрывала);

      снижение концентрации кислорода в газовой среде путем разбавления среды негорючими добавками (например, азотом, углекислым газом);

      снижение скорости химической реакции окисления за счет связывания активных радикалов и прерывания цепной реакции горения, протекающей в пламени, путем введения специальных химически активных веществ (ингибиторов);

      создание условий гашения пламени при прохождении его через узкие каналы между частицами огнетушащего вещества (эффект огнепреграждения);

      срыв пламени в результате динамического воздействия струи огнетушащего вещества на очаг горения.

    Производственные, складские и административные здания и сооружения объектов, а также отдельные помещения должны быть обеспечены первичными средствами пожаротушения, которые используют для локализации и ликвидации загораний, а также пожаров в начальной стадии их развития.

    Первичные средства пожаротушения предназначены для использования работниками организаций, личным составом подразделений пожарной охраны и иными лицами в целях борьбы с пожарами и подразделяются на следующие типы:

    1) переносные и передвижные огнетушители;

    2) пожарные краны и средства обеспечения их использования;

    3) пожарный инвентарь;

    4) покрывала для изоляции очага возгорания.

    Огнетушащие вещества

    Огнетушащие вещества - вещества, обладающие физико-химическими свойствами, которые позволяют создать условия для прекращения горения. К ним относятся вода, пены, порошки, газы, аэрозоли.

    Вода является наиболее широко применяемым средством тушения пожаров , связанных с горением различных веществ и материалов, обладает хорошими огнегасящими свойствами вследствие высокой теплоемкости и большой теплоты парообразования. Резервуар для воды должен быть объемом не менее 0,2 м 3 и укомплектован ведрами. Может применяться в виде сплошных и распыленных (тонкораспыленных) струй. Воду нельзя применять для тушения легковоспламеняющихся жидкостей, имеющих меньшую, чем у воды, плотность (бензин, керосин, минеральные масла) и для тушения пожара в электроустановках, находящихся под напряжением.

    Углекислый газ способствует ликвидации пожаров, главным образом, за счет эффекта объемного тушения. Он разбавляет воздух вокруг пожара, пока содержание кислорода в нем не снизится настолько, что станет недостаточным для поддержания горения. Поэтому его можно успешно применять для тушения пожаров класса B, при которых основная задача состоит в отделении воспламеняющихся паров от кислорода, содержащегося в воздухе. Углекислый газ имеет очень ограниченный охлаждающий эффект. Он может использоваться при тушении пожаров класса A в ограниченных помещениях, в которых содержание кислорода может быть снижено настолько, что пожар прекратится. Но тушение углекислым газом требует времени. Нужная концентрация углекислого газа должна поддерживаться до тех пор, пока пожар не прекратится полностью.

    Огнетушащая пена - коллоидная система, состоящая из пузырьков газа, окруженных пленками жидкости. Образуется при добавлении к воде пенообразователей. Различают пены низкой (до 20), средней (20-200) и высокой (более 200) кратности. Наиболее эффективна пена, полученная из фторсодержащих пенообразователей, обладающих пленкообразующим действием. Она может использоваться для тушения твердых материалов и всех классов горючих жидкостей, кроме химически взаимодействующих с водой.

    Огнетушащие порошки - мелко измельченные (20-60 мкм) минеральные соли с различными добавками, обеспечивающими текучесть и препятствующими слеживаемости (комкованию). Порошки общего назначения используют для тушения горящих твердых материалов, горючих жидкостей, газов и электрооборудования под напряжением. Порошки специального назначения применяют для тушения металлов, металлоорганических соединений. Огнетушащие порошки обеспечивают тушение пожара за счет охлаждения, объемного тушения, экранирования теплоты излучения и прерывания цепной реакции горения.

    Песок используют для тушения небольших очагов воспламенения электропроводки и горючих жидкостей (мазута, красок, масла и т. п.). Хранят его в ящиках (вместимостью 0,5, 1 или 3 м 3) вместе с совковой лопатой во всех цехах и производственных помещениях.

    Асбестовое полотно должно быть размером не менее 1x1 м. В местах хранения легковоспламеняющихся и горючих жидкостей оно может быть увеличено до 2x1,5 м или 2x2 м. Асбестовое полотно набрасывают на горящую поверхность и тем самым изолируют ее от окружающей среды. Используют его также для защиты от огня ценного оборудования, закрытия печей и отверстий в трубах с горючими материалами. Хранят в водонепроницаемом футляре (чехле), один раз в три месяца просушивают и очищают от пыли.

    3.3.1. Как использовать пожарный тетраэдр?

    Огонь не может возникнуть или продолжать гореть в отсутствие одной из сторон тетраэдра «горючее вещество - кислород-источник воспламенения (теплота) или при прерывании цепной химической реакции, поддерживающей горение.

    При удалении одного из указанных четырех элементов тетраэдр разрушается, и пожар любого типа прекращается.

    Различают два основных вида тушения пожара: ПОВЕРХНОСТНЫЙ И ОБЪЕМНЫЙ.

    При поверхностном тушении - поверхность горящего вещества (жидкого или твердого) покрывают слоем пены, воды, порошка или каким либо негорючим материалом. При этом прекращается доступ свежего воздуха к горящему веществу, снижается температура в зоне горения. Все это ведет к ликвидации пожара. Поверхностное тушение допускает присутствие в аварийном помещении людей.

    При объемном тушении - весь объем загерметизированного помещения заполняется парами огнегасящего вещества, инертным газом или водяным паром. Ликвидация пожара происходит от прекращения доступа воздуха в помещение или введение в него веществ, не поддерживающих или прекращающих горение. К объемному способу относят также заполнение загерметизированного помещения пеной или забортной водой.

    В зависимости от физико – химических свойств огнетушащих веществ применяют соответствующие способы тушения пожара.

    Способы тушения пожара основаны на исключении любого из условий горения. Существуют следующие способы прекращения горения (тушения пожара):

    ●ОХЛАЖДЕНИЕ. Охлаждение зоны горения или реагирующих веществ, в результате чего понижается энергия активизации молекул горючего вещества и окислителя до величины, при которой реакция горения прерывается.

    Охлаждают горящее вещество до уровня ниже температуры его воспламенения. Обычно это достигается за счет использованию воды в качестве огнетушащего средства, реже пену и твердую углекислоту.

    ●ИЗОЛИРОВАНИЕ – ПРЕКРАЩЕНИЕ (УМЕНЬШЕНИЕ) ВЫДЕЛЕНИЯ ГОРЮЧИХ ПАРОВ.

    Прекращается диффузия молекул горючего вещества или окислителя к зоне горения (изоляция реагирующих веществ от зоны горения). Основными средствами изоляции являются: пена, отдельные типы сухих порошков, песок, огнезащитное полотно (кошма). Иногда для тушения пожаров на судах прибегают к затоплению трюмов.

    ●РАЗБАВЛЕНИЕ - УМЕНЬШЕНИЕ ИЛИ ПРЕКРАЩЕНИЕ ПОСТУПЛЕНИЕ КИСЛОРОДА.

    Разбавление реагирующего вещества новым не поддерживающим горение веществом. Достигается благодаря уменьшению количества кислорода (воздуха) вокруг зоны возгорания. Таким действием обладают углекислый газ, азот, галлоны (фреон), пена, песок, пожарные покрывала, водяной пар или мелко распыленная вода. Реакция горения многих веществ прекращается, если содержание кислорода в воздухе достигнет 15%. Для уменьшения притока воздуха закрывают шахты, каналы систем вентиляции, двери, иллюминаторы.

    ●ПРЕРЫВАНИЕ ЦЕПНОЙ РЕАКЦИИ - ХИМИЧЕСКОЕ ТОРМОЖЕНИЕ.

    Противокаталитический эффект прерывает цепную химическую реакцию, поддерживающую горение. Таким образом, тушат огонь огнетушащие химические порошки и парообразующие жидкости (фреоны). Эти вещества воздействуют на молекулярную структуру соединений, образующихся в ходе цепной реакции, разрушают цепную реакцию, в результате чего скорость горения падает до критической и горение прекращается.

    При химическом воздействии реакция горения меняет свое направление, происходит разрыв цепи окисления, и реакция из экзотермической превращается в эндотермическую (теплопоглощение). Химическое торможение реакции горения основано на способности особо активных веществ, называемых ингибиторами, соединяться с активными центрами промежуточных реакций и выводить их из реакции горения. В результате скорость горения резко падает до критической, и горение прекращается из-за резкого снижения скорости тепловыделения.

    Потушить также пожар можно удалением горючих веществ за борт всеми возможными способами. Горючее вещество, удаленное от огня, не сможет поддерживать горение.

    Удалить горючие вещества (дерево, бумагу, одежду, мебель и т.д.) из зоны возгорания или из соседних помещений;

    Закрыть топливные задвижки, закрыть клапана на питающем трубопроводе жидкого или газообразного топлива;

    Маневрировать судном, чтобы сбить огонь и пламя.

    Для успешного тушения пожара необходимо быстрое принятие решения о выборе эффективного огнетушащего средства.

    Огнетушащие средства

    3.4.1. Какие существуют огнетушащие средства и в чем их достоинства и недостатки?

    1. ВОДА. В основном, оказывает охлаждающее действие. Дополнительное преимущество: при образовании больших объемов водяного пара происходит вытеснение кислорода. При испарении 1л воды образуется 1,7м³. насыщенного пара. Вода представляет собой идеальное средство для охлаждения многих горючих веществ.

    Преимущества:

    · море обеспечивает неограниченный запас воды; высокий уровень поглощения теплоты; универсальность; имеет малую вязкость, струя может глубоко проникать в очаг пожара и создавать пленку на поверхности горящей жидкости (легкая вода);

    · распыление для охлаждения значительных площадей или охлаждения границ пожара;

    ● превращаясь в пар, вытесняет воздух (объемное тушение).

    Недостатки:

    · возможное влияние на остойчивость судна;

    · тушение водой горящих жидкостей может способствовать распространению пожара;

    · вода непригодна для тушения пожаров при наличии электрооборудования или при наличии вблизи пожара кабелей под напряжением;

    · вода вступает в реакцию с некоторыми веществами, образуя ядовитые пары, а взаимодействие с карбидом кальция, натрия приводит к взрыву.

    · вода вызывает набухание некоторых грузов (портит груз).

    2. УГЛЕКИСЛЫЙ ГАЗ (СО 2). На судах углекислый газ СО 2 используется для тушения пожаров в машинных и грузовых помещениях, кладовых, эффективен для тушения электрического и электронного оборудования с помощью стационарных установок и огнетушителей.

    При температуре О 0 С и давлении 36 кг/см 2 СО 2 переходит в жидкое состояние. Из одного литра жидкого СО 2 , при расширении получается 500 литров газа. Углекислый газ на судах хранится в баллонах под давлением. При подачи в помещение он переходит в газообразное состояние с быстрым расширением, что приводит к его переохлаждению. В результате переохлаждения газ выбрасывается из установки (раструба огнетушителя) в виде хлопьев сублимированного снега («искусственного льда») с температурой минус 78,5 0 С. Попадая в очаг горения, СО 2 переходит из твердого состояния в газообразное.

    Углекислый газ в 1,5 раза тяжелее воздуха и поэтому постепенно концентрируется в нижней части защищаемого помещения. Тушение углекислым газом требует времени и нужной концентрации при объемном способе тушения. Горение может быть прекращено при концентрации его в закрытом помещении в диапазоне 30-45% объемных.

    Преимущества:

    · инертность; сравнительно невысокая стоимость; не повреждает груз, не оставляет следов, не проводит электричество;

    · не образует ядовитых или взрывоопасных газов при соприкосновении с большинством веществ.

    Недостатки:

    · ограниченный запас; не оказывает охлаждающего действия при объемном способе; создает опасность удушья при концентрации в воздухе 15 – 30%;

    · мало эффективен при применении на открытом воздухе;

    · при тушении магния вступает с ним в реакцию (выделяется кислород).

    3. ПЕНА. Подавляет огонь, образуя воздухонепроницаемый слой. Этот слой не дает возможности воспламеняющимся парам выходить за пределы поверхности, а кислороду проникать к горючему веществу. Тем самым исключается возгорание над покровом пены. Вследствие нагрева пузырьки пены лопаются, образуя водяной туман, который переходит в пар. Все это в комплексе прекращает процесс горения.

    Достоинства:

    · свободно и быстро покрывает поверхность; тушит горящие нефтепродукты, спирты, эфиры, кетоны. За счет воды содержащейся в растворе обладает охлаждающим эффектом (тушение пожаров класса А);

    · применяется совместно с огнетушащими порошками;

    · пена создает паровой барьер, препятствующий выходу паров наружу;

    · для получения пены применяется пресная, забортная или мягкая вода;

    · экономный расход воды, не вызывает перегрузки пожарных насосов;

    · пенообразователи имеют небольшой вес, системы не требуют много места для размещения (компактны).

    Недостатки:

    · проводит электричество; нельзя применять для тушения горючих металлов; ограниченный запас; не тушит газы.

    4 . ОГНЕТУШАЩИЕ ПОРОШКИ. Огнетушащие вещества в виде порошков делятся на две группы - это огнетушащие порошки общего назначения – для тушения пожаров классов А, В, С, Е и огнетушащие порошки специального назначения, которые используются для тушения только горючих металлов. Обычно в качестве сухого порошка применяется бикарбонат натрия с различными добавками, улучшающими текучесть, взаимную смешиваемость с пеной, водостойкость и срок хранения. В качестве сухого порошка применяются также фосфат аммония, бикарбонат калия, хлорид калия и т. д.

    Достоинства. Сухой порошок быстро сбивает пламя. Порошковое облако, попадая в зону горения, тормозит реакцию горения. Кроме этого, происходит разбавление горящих веществ негорючими газами, выделяющимися в результате термического разложения частиц порошка. Применяемые порошки не токсичны, однако при тушении рекомендуется защищать дыхательные пути. Порошки не оказывают вредного воздействия на судовое оборудование.

    Недостатки. Ограниченный запас, вызывают раздражение дыхательных путей, приводят к порче электроники. Обладают малым охлаждающим эффектом. Не обладают проникающей способностью.

    5 . ХЛАДОНЫ, (ФРЕОНЫ). Хладоны, галоны, (фреоны) – галоидированные углеводороды состоят из углерода и одного или нескольких галогенов: фтора, хлора, брома и йода. Тушение пожаров хладонами основано на химическом торможении реакции горения, т.е. связывание активных центров атомов и радикалов.

    Легко испаряясь, пары этих жидкостей заполняют весь объем горящего помещения. Достигнув очага пожара, они замедляют реакцию горения и обрывают ее, в результате чего пожар прекращается.

    Преимущества:

    · используются в небольших количествах; очень быстро сбивают огонь, не портят груз и оборудование; в системах нагнетания газа образуют однородную газовую среду; «проникающий» газ, распространяется по всему помещению, применим для тушения пожаров с электрооборудованием.

    Недостатки:

    ограниченный запас, сравнительно высокая стоимость. Отсутствует охлаждающее действие, ухудшают видимость. При использовании в условиях очень высоких температур (500˚С) возможно образование ядовитых побочных продуктов (т.е. высокая токсичность). Не эффективны для глубоко расположенных очагов возгорания (например, в матрасах, тюках шерсти и т.д.). Вдыхание галлонов вызывает головокружение и нарушение координации движений. Разрушают озоновый слой.

    В России наибольшее распространение получили хладоны 13В1, 12В1, фреон 114-В2 а также смесь бромистого этила (73%) и фреона 114 – В2 (27%) для тушения твердых и жидких горючих веществ. При достижении в аварийном помещении паров 215г на 1см куб. свободного объема цепная реакция горения прекращается. Эффективно тушат тлеющие материалы. Дальнейшие поставки хладонов этих типов запрещены, так как они разрушают озоновый слой.

    ЗАМЕНИТЕЛИ ХЛАДОНА (ГАЛОНА).

    После запрещения Монреальским Протоколом использования и производства озоноразрушающих хладонов, начались интенсивные поиски альтернативных им объемных средств тушения. Как в нашей стране, так и за рубежом изготавливаются и устанавливаются на суда новейшие системы пожаротушения, использующие тонко распыленную воду, аэрозольные генераторы, инертные газы и неразрушаюшие озоновый слой хладоны. В настоящее время созданы системы газового тушения, использующие хладон FM – 200 (гептофторпропан). Допущен для использования в системах пожаротушения для защиты как обитаемых так и необитаемых помещений. Для прекращения пожара требуется низкая концентрация хладона (7,5%), не влияющая на органы дыхания человека.

    ИНЕРТНЫЕ ГАЗЫ (ИГ).

    Инертные газы это газ или смесь газов, не содержащих достаточное количество кислорода для поддержания горения.

    ИГ получаются от сжигания органического топлива в судовых котлах, и отдельных газогенераторах на дизельном топливе. Азотные генераторы вырабатывают ИГ - АЗОТ из воздуха. Огнегасительное действие ИГ сводится к понижению концентрации кислорода в очаге горения. Их применяют для заполнения свободного пространства танков, трюмов для защиты от пожаров и взрывов, а также для тушения пожаров в трюмах. Азот (N) – широко применяется в системах инертного газа для инертизации танков на танкерах – химовозах, и танкерах - газовозах. Для эффективного применения системы содержание кислорода в ИГ должно быть не более 5% при температуре газов не более 40˚С. При выгрузке нефтепродуктов подача газов в танки на 25% должна превышать максимальную скорость разгрузки.

    ТОНКОРАСПЫЛЕННАЯ ВОДА.

    Тонкораспыленная вода является эффективным и перспективным средством тушения. Она рекомендуется для тушения твердых веществ в измельченном виде, волокнистых материалов и легковоспламеняющихся жидкостей.

    Для получения тонкораспыленной воды требуется винтовые и вихревые распылители при давлении воды в магистрали 25-30 кг/см 2 . В этом случае получаются частички воды размером от 0,1 мм до 0,5. Такая тонкораспыленная вода в пламени превращается в пар, предварительно отобрав значительную часть тепла от пожара, а пар, разбавляя окислитель в зоне пожара, способствует прекращению горения.

    Требуемая дисперсность распыла зависит от характера горящих веществ. Например, для тушения бензина и пылеобразных веществ диаметр капель должен быть не более 0,1мм, для спиртов – 0,3мм, для горючих жидкостей типа трансформаторного масла и волокнистых материалов – 0,5мм.

    Тонкораспыленная вода сейчас чаще применяется в стационарных установках тушения пожаров в МО, инсинераторых, сепараторных помещениях, причем автоматически, поскольку не опасна человеку.

    ВОДЯНОЙ ПАР.

    Водяной пар для тушения пожаров подается в зону горения по специальным трубопроводам, от паросиловой установки. Лучшими огнегасительными свойствами обладает насыщенный пар. Огнегасительные концентрации водяного пара зависят от вида горючих материалов и не превышают 35% по объему. Применение водяного пара для тушения пожаров эффективно в помещениях объемом до 500м 3 . Высокая температура, опасность для личного состава, малые скорости заполнения аварийного помещения ограничивают применение водяного пара как огнетушащего средства. Пар нельзя применять для тушения разогретого железа до 700 0 С и горящей сажи, т.к. происходит усиление горения и возможность взрыва выделяющегося водорода.

    ОГНЕТУШАЩИЕ АЭРОЗОЛИ.

    Принцип действия огнетушащих аэрозолей основан на ингибировании окислительно-восстановительных реакций мелкодисперсными продуктами (аэрозолем) солей и окислов щелочных и щелочноземельных металлов, образующихся при сгорании аэрозолеобразующего заряда, находящегося в корпусе генератора, и способных находиться во взвешенном состоянии в течение 30-50 минут.

    Газоаэрозольная смесь, выделяющаяся при срабатывании генератора, токсичная, оказывает раздражающее действие на слизистые оболочки органов дыхания, поэтому входить в помещение, в котором применялись генераторы, можно не ранее, чем через 30 мин. после прекращения их работы в средствах защиты органов дыхания или после проветривания.

      Технические средства обучения: компьютерная техника, мультимедийный проектор.

    1. Текст лекции

    1. Способы прекращения горения. Характеристики отв.

        Основные способы прекращения горения.

    На предмете ТГИВ вы рассматривали предельные параметры процессов горения. Известно, что для прекращения горения необходимо либо снизить тепловыделение в зоне горения фронта пламени, либо увеличить из фронта пламени теплоотвод. Цель – понизить температуру горения до критической температуры гашения.

    Это может быть достигнуто различными путями:

      Охлаждением поверхности ГЖ или ТГМ ниже температуры, соответственно, их кипения или термического разложения, тем самым снижая количество горючих паров и газов, поступающих в зону горения фронта пламени;

      Изоляцией зоны горения от источника горючих газов, паров и окислителя (например, герметизацией либо горящего вещества, либо объема, в котором протекает процесс горения);

      Разбавлением горючих газов, паров и окислителя, поступающих в зону горения;

      Ингибированием процессов горения (т.е. введением в исходную горючую смесь или в зону горения ингибиторов средств химического торможения цепных реакций окисления.

    Помимо перечисленных способов, прекращения горения можно достичь отрывом пламени, например, путем увеличения линейной скорости поступления горючего вещества (газа) в пламя выше его видимой скорости распространения или же механическим срывом пламени, например, сдувая его сильной струей воздуха.

    Огнетушащее вещество (ОТВ) – это вещество, обладающее физико-химическими свойствами, позволяющими создать условия для прекращения горения.

    Способы прекращения горения и огнетушащие вещества

    Таблица № 1

    По способу прекращения горения все ОТВ подразделяются на четыре основные группы в соответствии с таблицей. 1.

    Способ прекращения

    горения

    Применяемые огнетушащие вещества

    Охлаждение зоны горения и поверхности горящих веществ

    Вода (до 1700 0 С сплошными струями и тонкораспыленной водой), вода со смачивателями и загустителями, водные растворы солей, твердый СО 2 , снег, перемешиванием.

    Разбавление реагирующих веществ в зоне горения.

    Уменьшение концентрации О 2 до 14 – 16%

    Негорючие газы (СО, N 42 0, дымовые газы),

    водяной пар, тонкораспыленная вода, газо-водяные смеси, аэрозоль.

    Изоляция горящих веществ от зоны горения.

    Сбивание пламени.

    Химическая и воздушно-механическая пены, огнетушащие порошковые составы, аэрозоли, негорючие сыпучие вещества (песок, земля, шлаки и т.п.), листовые негорючие материалы.

    Слоем продуктов взрыва ВВ, подрывом в горючем веществе.

    Химическое торможение (ингибирование) реакций горения.

    Галогеноуглеводороды (хладоны, фреон в 10 раз эффективнее СО 2) огнетушащие порошковые составы, аэрозоли, (соли металлов)


    Перечисленные в ней ОТВ, обладая одним доминирующим огнетушащим свойством, оказывают комбинированное действие на процесс горения. Например, вода обладает охлаждающим, изолирующим и разбавляющим действием; пена – изолирующим и охлаждающим; порошковые составы – изолирующим и ингибирующим; хладоны – ингибирующим и разбавляющим действием. Поэтому одно и то же ОТВ применяется для тушения разных классов пожаров, что наглядно видно из таблицы 2.

    Все способы тушения пожаров, а вместе с ними и ОТВ, подразделяются также на поверхностные и объемные. При поверхностном способе ОТВ подается непосредственно на поверхность горящего вещества, а при объемном – с помощью ОТВ создается негорючая среда в районе очага пожара (локальное тушение) или во всем объеме помещения. Однако такое разделение весьма условно, так как многие ОТВ применяются и для поверхностного, и для объемного тушения.

    Таблица № 2

    Применение ОТВ для тушения пожаров

      1. Класс пожарной нагрузки

        Вид пожарной нагрузки

        Огнетушащее вещество

        Обычные твердые горючие материалы (ТГМ). (Древесина, бумага, текстиль, каучук)

        Все виды ОТВ (прежде всего вода) Хладоны, порошки, пены и др.

        Горючие жидкости (нефтепродукты, бензин, спирт, ацетон и др.)

        Распыленная вода(d<100мк), все виды пен(низкой К<10, средней 10 < К<200, высокой К>200 кратности), составы на основе галогеноуглеводородов, порошки, аэрозоли.

        Горючие газы (бытовой газ, водород, аммиак, пропан и др.).

        Газовые составы: инертные разбавители (СО 2 , N 2), галогеноуглеводороды - ингибиторы; порошки, вода (для охлаждения), газоводяные струи АГВТ.

        Металлы, металлосодержащие вещества, (щелочные металлы, магний, натрий, цинк, титан и его сплавы, термит, электрон.)

        Порошки П- 2АП, ПС, МГС, (при спокойной подаче на горящую поверхность). Азот (Na,Ka,Ca), Аргон (Mq, Li, Al)

        Электроустановки находящиеся под, напряжением

        Хладоны, диоксид углерода, порошки, аэрозоли.

        Основные характеристики ОТВ.

    Эффективность пожаротушения определяется многими факторами, важнейшими из которых являются: класс пожарной нагрузки; характер процесса горения; условия, при которых протекает горение, способ пожаротушения; вид огнетушащего вещества; конструкция аппарата пожаротушения; метеорологические и погодные условия на пожаре и др.

    Основными характеристиками ОТВ являются:

      огнетушащая эффективность;

      интенсивность подачи;

      удельный расход.

    Данные показатели применяются для сравнительной оценки эффективности ОТВ, при проектировании передвижных и стационарных установок пожаротушения, для нормирования и создания необходимых запасов ОТВ в пожарных частях и на защищаемых объектах, при расчете сил и средств на тушение пожара и т.д.

    Огнетушащая эффективность – это минимальное количество ОТВ, израсходованное на тушение модельного очага пожара данного класса. Для объемного способа тушения огнетушащая эффективность различных ОТВ зависит от многих факторов: природы горючего вещества, условий горения, свойств ОТВ, способов его применения и т.д.

    Интенсивность подачи огнетушащего вещества (I) – это расход ОТВ во времени на единицу защищаемой поверхности или объема. Размерность при поверхностном способе тушения – , для объемного способа – , для линейного способа . Ранее интенсивность подачи ОТВ определялась расчетным путем на основе анализа наиболее успешно потушенных пожаров:

    I = Q отв. / (П · τ т · 60), (1)

    где: Q отв – общее количество ОТВ, израсходованного на тушение пожара или проведение опыта, л, кг, м 3 ;

    τ т – время, затраченное на тушение или проведение опыта, мин.;

    П – величина расчетного параметра пожара (площадь - м 2 , объем - м 3 , периметр или фронт – м.).

    В настоящее время оптимальные параметры подачи ОТВ определяются следующим образом. На основе результатов лабораторных и полигонных экспериментов строят график зависимости времени тушения от интенсивности подачи . График этой зависимости представлен на рис.1.

    Удельный расход ОТВ (q уд) – это количество огнетушащего вещества (кг, л), которое требуется на единицу расчетного параметра пожара (м 3 , м 2 , м) для его успешного тушения:

    q уд = Q отв. / П п (2)

    где: Q отв – общее количество ОТВ на тушение, л, кг, м 3 ;

    q уд – удельный расход л/м 2 ; л/м 3 ; кг/м 3 ;

    П п – величина расчетного параметра пожара (м, м 2 , м 3)

    Рис.1. Зависимость времени тушения от интенсивности подачи ОТВ.

    Рис.2. Зависимость удельного расхода от интенсивности подачи ОТВ.

    Удельный расход ОТВ непосредственно определяет затраты на тушение пожара, поэтому должен быть минимальным.

    Удельный расход ОТВ является одним из основных параметров тушения пожара. Он зависит от физико-химических свойств пожарной нагрузки (n) и огнетушащих средств (w), коэффициента поверхности пожарной нагрузки (К п), удельных потерь ОТВ (q пот). которые влияют на процесс подачи его в зону горения и нахождения в ней, т. е.

    q уд =f(n, w, К п, q пот) (3)

    q пот = f(k пот, К р, t) (4)

    где: k пот – коэффициент потерь ОТВ при подаче в зону горения;

    К р – коэффициент потерь (разрушения) ОТВ в зоне горения;

    t – время тушения.

    Фактический удельный расход ОТВ в некоторой степени позволяет оценить деятельность РТП и подразделений по тушению пожаров в сравнении с подобными по виду и классу пожарами. Снижение удельного расхода служит одним из показателей успешного тушения пожара.

    Фактический и необходимый удельные расходы можно определить так:

    q ф =Q Ф ·t т (5)

    q н =Q тр ·t р (6)

    где: Q Ф, Q тр – фактическое и требуемое количество ОТВ, подаваемого в единицу времени (фактический, требуемый расход), л/с, л/мин;

    t т – время подачи ОТВ в зону горения (время тушения пожара ) в мин;

    t р – расчетное время тушения в мин.

    Минимальный удельный расход и соответствующая ему оптимальная интенсивность определяются аналитическим путем по формулам или графически по рис. 2. Тушение пожара при этих параметрах подачи ОТВ будет наиболее экономичным.

    Однако надо отметить, что до настоящего времени ряд действующих нормативных документов не учитывает это важное обстоятельство. В них нормативная интенсивность определена по формуле.