Строение и функции митохондрий и лизосом. Органоиды клетки (органеллы) Хромосомы лизосомы митохондрии

Постоянные клеточные структуры, клеточные органы, обеспечивающие выполне­ние специфических функций в процессе жизнедеятельнос­ти клетки - хранение и передачу генетической информации, перенос веществ, синтез и превращения ве­ществ и энергии, деление, движение и др.

К органоидам (органеллам) клеток эукариот относятся:

  • хромосомы;
  • клеточная мембрана;
  • митохондрии;
  • комплекс Гольджи;
  • эндоплазматическая сеть;
  • рибосомы;
  • микротрубочки;
  • микрофиламенты;
  • лизосомы.

В животных клетках присутствуют также центриоли, микрофибриллы, а в растительных - свойственные только им пластиды.

Иногда к органоидам клеток эукариот отно­сят и ядро в целом.

Прокариоты лишены большинства органоидов, у них имеются лишь клеточная мембрана и рибосомы, отличающиеся от цитоплазматических рибосом клеток эукариот.

В специализированных эукариотных клетках могут быть сложные структуры, в основе которых находятся универсальные органоиды, например микротру­бочки и центриоли - главные компоненты жгутиков и ресничек. Микрофибриллы лежат в основе тоно- и нейрофибрилл. Специальные структуры одноклеточных, напри­мер жгутики и реснички (построены так же, как у клеток многоклеточных), выполняют функцию органов движения.

Чаще в современной литературе термины «органоиды » и «органеллы » употребляют как синонимы.

Структуры, общие для животных и растительных клеток

Схематическое изображение

Структура

Функции

Плазматическая мембрана (плазмалемма, клеточная мембрана)

Два слоя липида (бислой) между двумя слоями белка

Избирательно прони­цаемый барьер, регули­рующий обмен между клеткой и средой

Ядро

Самая крупная органелла, заключенная в оболочку из двух мембран, пронизанную ядерными порами . Со­держит хроматин - в такой форме раскру­ченные хромосомы на­ходятся в интерфазе. Содержит также струк­туру, называемую яд­рышком

Хромосомы содержат ДНК - вещество нас­ледственности.ДНК состоит из генов, регу­лирующих все виды клеточной активности. Деление ядра лежит в основе размножения клеток, а следователь­но, и процесса воспро­изведения. В ядрышке образуются рибосомы

Эндоплазматический ретикулум (ЭР)

Система уплощенных мембранных мешоч­ков - цистерн - в виде трубочек и пластинок. Образует единое целое с наружной мембраной ядерной оболочки

Если поверхность ЭР покрыта рибосомами, то он называется шеро­ховатым .По цистер­нам такого ЭР транс­портируетсябелок, синтезированный на рибосомах. Гладкий ЭР (без рибосом) служит местом синтеза липидов и стероидов

Рибосомы

Очень мелкие органеллы, состоящие из двух субчастиц - большой и малой. Содержат белок и РНК приблизительно в равных долях. Рибо­сомы, обнаруживаемые в митохондриях (а так­же в хлоропластах - у растений), еще мельче

Место синтеза белка, где удерживаются в правильном положе­нии различные взаимо­действующие молеку­лы. Рибосомы связаны с ЭР или свободно ле­жатвцитоплазме. Много рибосом могут образоватьполисому (полирибосому ), в кото­рой они нанизаны на единую нить матрич­ной РНК

Митохондрии

Митохондрия окруже­на оболочкой из двух мембран, внутренняя мембрана образует складки (кристы ). Со­держит матрикс, в ко­тором находятся не­большое количество рибосом, одна кольце­вая молекула ДНК и фосфатные гранулы

При аэробном дыхании в кристах происходит окислительное фосфорилирование и перенос электронов, а в матрик­се работают ферменты, участвующие в цикле Кребса и в окислении жирных кислот

Аппарат Гольджи

Стопка уплощенных мембранных мешочков - цистерн . На одном конце стопки мешочка непрерывно образуются, а с другого - отшнуровываются в виде пузырь­ков. Стопки могут существовать в виде дискретных диктиосом, как в рас­тительных клетках, или образовывать прост­ранственную сеть, как во многих животных клетках

Многие клеточные ма­териалы, например ферменты из ЭР, пре­терпевают модифика­цию в цистернах и транспортируются в пузырьках. Аппарат Гольджи участвует в процессе секреции, и в нем образуются лизо­сомы

Лизосомы

Простой сферический мембранный мешочек (мембрана одинарная), заполненный пищева­рительными (гидроли­тическими) фермента­ми. Содержимое ка­жется гомогенным

Выполняют много функций, всегда свя­занных с распадом ка­ких-либо структур или молекул

Микротельца

Органелла не совсем правильной сферичес­кой формы, окружен­ная одинарной мембра­ной. Содержимое име­ет зернистую структу­ру, но иногда в нем по­падается кристаллоид, или скопление нитей

Все микротельца со­держат каталазу - фермент, катализирую­щий расщепление пероксида водорода. Все они связаны с окисли­тельными реакциями

Клеточная стенка, срединная пластинка, плазмодесмы

клеточная стенка

Жесткая клеточная стенка, окружающая клетку, состоит из целлюлозных микро­фибрилл, погруженных в матрикс, в состав ко­торого входят другие сложные полисахари­ды, а именно гемицеллюлозы и пектиновые вещества. У некоторых клеток клеточные стен­ки претерпевают вто­ричное утолщение

Обеспечивает механи­ческую опору и защиту. Благодаря ей возникает тургорное давление, способствующее усиле­нию опорной функции. Предотвращает осмо­тический разрыв клет­ки. По клеточной стен­ке происходит пере­движение воды и мине­ральных солей. Различ­ные модификации, на­пример пропитывание лигнином, обеспечива­ютвыполнение специализированных функций

средняя пластинка

Тонкий слой пектино­вых веществ (пектатов кальция и магния)

Скрепляет друг с дру­гом соединение клетки

плазмодесма

Тонкая цитоплазматическая нить, связываю­щая цитоплазму двух соседних клеток через тонкую пору в клеточ­ной стенке. Пора вы­стлана плазматической мембраной Сквозь по­ру проходит десмотубула, часто соединенная на обоих концах с ЭР

Объединяют протопласты соседних кле­ток в единую непре­рывную систему - симпласт , по которой про­исходит транспорти­ровка веществ между этими клетками

Хлоропласт

Крупная, содержащая хлорофилл пластида, в которой протекает фо­тосинтез. Хлоропласт окружен оболочкой из двойной мембраны и заполнен студенистой стромой . В строме на­ходится система мемб­ран, собранных в стоп­ки , или граны. В ней же может отлагаться крах­мал. Кроме того, строма содержит рибосомы, кольцевую молекулу ДНК и капельки масла

В этой органелле про­исходит фотосинтез, то есть синтез сахаров и других веществ из СО 2 и воды за счет световой энергии, улавливаемой хлорофиллом.Свето­вая энергия превраща­ется в химическую

Крупная центральная вакуоль

Мешок, образованный одинарной мембраной, которая называется тонопластом . В вакуоли содержится клеточный сок - концентриро­ванный раствор раз­личных веществ, таких, как минеральные соли, сахара, пигменты, ор­ганические кислоты и ферменты. В зрелых клетках вакуоли обыч­но бывают большими

Здесь хранятся различ­ные вещества, в том числе и конечные про­дукты обмена. От со­держимого вакуоли в сильной степени зави­сят осмотические свойства клетки. Иног­да вакуоль выполняет функции лизосом

Сравнительная характеристика РНК и ДНК

Признаки

РНК

ДНК

Местонахождение в клетке

Ядро, рибосомы, цито­плазма, митохондрии, хлоропласты

Ядро, митохондрии, хло­ропласты

Местонахождение в ядре

Ядрышко

Хромосомы

Строение макро­молекулы

Одинарная полинуклеотидная цепочка

Двойной неразветвленный линейный полимер, свернутый правозакрученной спиралью

Мономеры

Рибонуклеотиды

Дезоксирибонуклеотиды

Состав нуклеотида

Азотистое основание (пуриновое - аденин, гуа­нин, пиримидиновое - урацил, цитозин); рибоза (углевод): остаток фос­форной кислоты

Азотистое основание (пуриновое - аденин, гуа­нин, пиримидиновое - тимин, цитозин); дезоксирибоза (углевод): остаток фосфорной кис­лоты

Типы нуклеотидов

Алениловый (А), гуаниловый (Г), уридиловый (У), цитидиловый (Ц)

Алениловый (А), гуаниловый (Г), тимидиловый (Т), цитидиловый (Ц)

Свойства

Не способна к самоудвое­нию. Лабильна

Способна к самоудвое­нию по принципу комплементарности (реду­пликации): А-Т, Т-А, Г-Ц, Ц-Г Стабильна

Функции

Информационная (иРНК) - передает код наследственной инфор­мации о первичной струк­туре белковой молекулы; рибосомальная (рРНК) - входит в состав рибосом; транспортная (тРНК) - переносит аминокислоты к рибосомам; митохондриальная и пластидная РНК - входят в состав рибосом этих органелл

Химическая основа хро­мосомного генетического материала (гена); синтез ДНК, синтез РНК, ин­формация о структуре белков

Лизосомы представляют собой пузырьки, отделившиеся от аппарата Гольджи и взвешенные в цитоплазме. Лизосомы формируют внутриклеточную пищеварительную систему у которая позволяет клеткам перерабатывать: (1) поврежденные структуры клетки; (2) частицы питательных веществ, захваченные клеткой; (3) нежелательные элементы, например бактерии. Лизосомы разных клеток существенно отличаются друг от друга, однако их диаметр обычно составляет 250-750 нм.

Лизосома окружена обычным липидным бисло-ем и содержит большое число маленьких гранул от 5 до 8 нм в диаметре. Содержимое гранул представлено белковыми агрегатами, которые содержат около 40 разных гидролаз {расщепляющих ферментов). Гидролитические ферменты способны расщеплять органические вещества на два или более фрагментов путем присоединения к одному из них протона, а к другому - гидроксильного иона.
Так, белки гидролизуются до аминокислот, гликоген - до глюкозы, жиры - до глицерина и жирных кислот.

Мембрана лизосом , как правило, препятствует попаданию ферментов непосредственно в цитоплазму, таким образом не допуская самопереваривания клетки. Однако в некоторых случаях происходит нарушение целостности лизосомальных мембран, что позволяет ферментам выходить в цитозоль. Эти ферменты затем расщепляют органические вещества, которые находятся в непосредственной близости, до небольших, легко диффундирующих мономеров, таких как аминокислоты и глюкоза. Некоторые особые функции лизосом изложены далее.

Пероксисомы напоминают лизосомы , однако имеют два важных отличия. Во-первых, считают, что они образуются не из аппарата Гольджи, а из эндоплазматического ретикулума путем самокопирования или отпочковывания. Во-вторых, они содержат в основном оксидазы, а не гидролазы. Многие оксидазы способны превращать кислород и протоны, образующиеся в клеточных реакциях, в перекись водорода (Н2О2).

Перекись водорода - сильный окислитель, который вместе с каталазой (одна из оксидаз пероксисом) используется клеткой для окисления многих вредных для нее веществ. Так, с помощью этого механизма пероксисомы клеток печени разрушают около половины объема алкоголя, поступающего в организм.

Одной из важных функций многих клеток является секреция тех или иных веществ . Почти все эти вещества вырабатываются с помощью эндоплазматического ретикулума и аппарата Гольджи, затем высвобождаются последним в цитоплазму в виде своеобразных хранилищ - секреторных пузырьков, или секреторных гранул. Эти пузырьки хранят проферменты (ферменты в неактивном состоянии), которые впоследствии выделяются через мембрану клетки наружу и попадают в панкреатический проток, а оттуда - в двенадцатиперстную кишку, где они активируются и используются для переваривания пищи.

Секреторные гранулы (секреторные пузырьки) ацинарных клеток поджелудочной железы.

Митохондрии клетки

Митохондрии образно называют «энергетическими станциями» клетки, без них клетка была бы неспособна извлекать энергию из питательных веществ и выполнять свои функции.

Митохондрии располагаются во всех отделах цитоплазмы, однако их общее число зависит от потребности данной клетки в энергии и колеблется от нескольких десятков до нескольких тысяч штук. Более того, плотность распределения митохондрий в цитоплазме наиболее высока в области с наивысшей метаболической активностью. Митохондрии могут иметь разную форму и размер. Они бывают округлые (диаметром всего несколько сотен нанометров), вытянутые (около 7 мкм длиной и более 1 мкм в диаметре), а также ветвящиеся и нитевидные.

Основные структуры митохондрий представлены двумя мембранами - наружной и внутренней, каждая из которых состоит из липидного бислоя и белков. Многочисленные складки внутренней мембраны формируют выступы, называемые кристами, с которыми связываются окислительные ферменты.

Кроме того, просвет митохондрии заполнен матриксом, который содержит большое количество растворенных ферментов, необходимых для процессов извлечения энергии из питательных веществ. Эти ферменты вместе с окислительными ферментами, также расположенными в области крист, способствуют окислению питательных веществ до углекислого газа и воды, приводя к высвобождению энергии, которая используется для синтеза макроэргического вещества - аденозинтрифосфата (АТФ). Образовавшийся АТФ перемещается из митохондрии в ту область клетки, где существует потребность в энергии для выполнения какой-либо функции.

Митохондрии относят к самовоспроизводящимся структурам. Это означает, что одна митохондрия при увеличении потребности в энергии АТФ может разделиться на две, три и т.д. Деление происходит благодаря наличию в митохондрии молекул дезоксирибонуклеиновой кислоты - таких же, как и в ядре клетки. В митохондриях ДНК выполняет сходную функцию, регулируя их самовоспроизведение.


Учебное видео: строение митохондрий и их функции

При проблемах с просмотром скачайте видео со страницы

1. Сходное строение клеток растений и животных - доказательство
А) их родства
Б) общности происхождения организмов всех царств
В) происхождения растений от животных
Г) усложнения организмов в процессе эволюции
Д) единства органического мира
Е) многообразия организмов

Ответ

2. Какие функции выполняет комплекс Гольджи?
А) синтезирует органические вещества из неорганических
Б) расщепляет биополимеры до мономеров
В) накапливает белки, липиды, углеводы, синтезируемые в клетке
Г) обеспечивает упаковку и вынос веществ из клетки
Д) окисляет органические вещества до неорганических
Е) участвует в образовании лизосом

Ответ

3. Установите соответствие между признаком организма и группой, для которой он характерен: 1-прокариоты, 2-вирусы.
А) клеточное строение тела
Б) наличие собственного обмена веществ
В) встраивание собственной ДНК в ДНК клетки хозяина
Г) состоит из нуклеиновой кислоты и белковой оболочки
Д) размножение делением надвое
Е) способность к обратной транскрипции

Ответ

А1 Б1 В2 Г2 Д1 Е2

4. К автотрофам относят
А) споровые растения
Б) плесневые грибы
В) одноклеточные водоросли
Г) хемотрофные бактерии
Д) вирусы
Е) большинство простейших

Ответ

5. Установите последовательность процессов, происходящих в ходе мейоза
А) расположение пар гомологичных хромосом в экваториальной плоскости
Б) конъюгация, кроссинговер гомологичных хромосом
В) расположение в плоскости экватора и расхождение сестринских хромосом
Г) образование четырёх гаплоидных ядер
Д) расхождение гомологичных хромосом

Ответ

5а. Какие признаки характеризуют мейоз?
А) наличие двух следующих одно за другим делений
Б) образование двух клеток с одинаковой наследственной информацией
В) расхождение гомологичных хромосом в разные клетки
Г) образование диплоидных дочерних клеток
Д) отсутствие интерфазы перед первым делением
Е) конъюгация и кроссинговер хромосом

Ответ


6. Установите соответствие между характеристикой гаметогенеза и его видом: 1-овогенез, 2-сперматогенез
А) образуется одна крупная половая клетка
Б) образуются направительные клетки
В) формируется много мелких гамет
Г) питательные вещества запасаются в одной из четырех клеток
Д) образуются подвижные гаметы

Ответ

А1 Б1 В2 Г1 Д2

7. Установите последовательность процессов, происходящих в клетке с хромосомами в интерфазе и последующем митозе
А) расположение хромосом в экваториальной плоскости
Б) репликация ДНК и образование двухроматидных хромосом
В) спирализация хромосом
Г) расхождение сестринских хромосом к полюсам клетки

Ответ

7+. Какие структуры клетки претерпевают наибольшие изменения в процессе митоза?
А) ядро
Б) цитоплазма
В) рибосомы
Г) лизосомы
Д) клеточный центр
Е) хромосомы

Ответ

8. Установите соответствие между строением органоида и его видом: 1-клеточный центр, 2-рибосома
А) состоит из двух перпендикулярно расположенных цилиндров
Б) состоит из двух субъединиц
В) образован микротрубочками
Г) содержит белки, обеспечивающие движение хромосом
Д) содержит белки и нуклеиновую кислоту

Ответ

А1 Б2 В1 Г1 Д2

9. Установите последовательность процессов, происходящих при фагоцитозе
А) поступление мономеров в цитоплазму
Б) захват клеточной мембраной питательных веществ
В) гидролиз полимеров до мономеров
Г) образование фагоцитозного пузырька внутри клетки
Д) слияние фагоцитозного пузырька с лизосомой

Ответ

Ответ

12. Основные положения клеточной теории позволяют сделать выводы о
А) влиянии среды на приспособленность
Б) родстве организмов

Г) развитии организмов от простого к сложному

Е) возможности самозарождения жизни из неживой материи

Ответ

12+. Основные положения клеточной теории позволяют сделать выводы о
А) биогенной миграции атомов
Б) родстве организмов
В) происхождении растений и животных от общего предка
Г) появлении жизни на Земле около 4,5 млрд. лет назад
Д) сходном строении клеток всех организмов
Е) взаимосвязи живой и неживой природы

Ответ

12++. Какие положения содержит клеточная теория?
А) Новые клетки образуются в результате деления материнской клетки
Б) В половых клетках содержится гаплоидный набор хромосом
В) Клетки сходны по химическому составу
Г) Клетка – единица развития всех организмов
Д) Клетки тканей всех растений и животных одинаковы по строению
Е) Все клетки содержат молекулы ДНК

Ответ

13. Сходство клеток грибов и животных состоит в том, что они имеют
А) оболочку из хитиноподобного вещества
Б) гликоген в качестве запасного углевода
В) оформленное ядро
Г) вакуоли с клеточным соком
Д) митохондрии
Е) пластиды
А) образуют ткани и органы
Б) участвуют в процессе оплодотворения
В) всегда гаплоидны
Г) имеют диплоидный набор хромосом
Д) образуются в процессе мейоза
Е) делятся путем митоза

Ответ

А1 Б2 В2 Г1 Д2 Е1

17. Чем митохондрии отличаются от лизосом?
А) имеют наружную и внутреннюю мембраны
Б) имеют многочисленные выросты – кристы
В) участвуют в процессах освобождения энергии
Г) в них пировиноградная кислота окисляется до углекислого газа и воды
Д) в них биополимеры расщепляются до мономеров
Е) участвуют в обмене веществ

Ответ

Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.

Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.

Особенности строения

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана . Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин - белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство . Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Внутренняя мембрана . Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO 2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений. В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление . Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Функции в клетке

  1. Основная функция митохондрий – образование молекул АТФ.
  2. Депонирование ионов Кальция.
  3. Участие в обмене воды.
  4. Синтез предшественников стероидных гормонов.

Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.

Таблица: строение и функции митохондрий (кратко)
Структурные элементы Строение Функции
Наружная мембрана Гладкая оболочка, построена из липидов и белков Отграничивает внутреннее содержимое от цитоплазмы
Межмембранное пространство Находятся ионы водорода, белки, микромолекулы Создает протонный градиент
Внутренняя мембрана Образует выпячивания – кристы, содержит белковые транспортные системы Перенос макромолекул, поддержание протонного градиента
Матрикс Место расположения ферментов цикла Кребса, ДНК, РНК, рибосом Аэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
Рибосомы Объединённые две субъединицы Синтез белка

Сходство митохондрий и хлоропластов


Общие свойства для митохондрий и хлоропластов обусловлены, прежде всего, наличием двойной мембраны.

Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

И митохондрии и хлоропласты могут делиться с помощью перетяжки.

Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

Опишем кратко сходства и различия:

  • Являются двомембранными органеллами;
  • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
  • обладают собственным геномом;
  • способны синтезировать белки и энергию.

Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.

Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС) , или эндоплазматический ретикулум (ЭПР) , — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.

Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты («отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.

Или комплекс Гольджи , — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х-6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.

Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).

Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Лизосомы

Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом .

Различают: 1) первичные лизосомы , 2) вторичные лизосомы . Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.

Вакуоли

Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль . Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком . В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.

Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки , отдельные элементы которой могут переходить друг в друга.

Митохондрии

1 — наружная мембрана;
2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК.

Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.

Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар , где происходит накопление Н + .

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.

Пластиды

1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана; 6 — ламеллы; 7 — зерна крахмала; 8 — липидные капли.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид : лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40-60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н + . Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Рибосомы

1 — большая субъединица; 2 — малая субъединица.

Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50-63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).

В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы) . В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).

Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Цитоскелет

Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр составляет примерно 24 нм, толщина стенки — 5 нм. Основной химический компонент — белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты — нити диаметром 5-7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.

Включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками. В клетках высших растений (голосеменные, покрытосеменные) клеточный центр центриолей не имеет. Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей. Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.

Органоиды движения

Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибриллы (мышечные клетки) и др.

Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. В основании аксонемы находятся базальные тельца, представленные двумя взаимно перпендикулярными центриолями (каждое базальное тельце состоит из девяти триплетов микротрубочек, в его центре микротрубочек нет). Длина жгутика достигает 150 мкм, реснички в несколько раз короче.

Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.

    Перейти к лекции №6 «Эукариотическая клетка: цитоплазма, клеточная оболочка, строение и функции клеточных мембран»