Подводные аппараты для освоения морских глубин. Проекты автономных необитаемых подводных аппаратов семейства «Клавесин

Системы и элементы глубоководной техники подводных исследований

Подводные аппараты для исследования океана их назначение и разновидности

Итак, подводные аппараты, делятся на две основные группы: обитаемые и необитаемые. Необитаемые, в свою очередь делятся на 2 вида: телеуправляемые и автономные.

Подводные необитаемые аппараты.

Автономный необитаемый подводный аппарат (АНПА)- это подводный робот чем-то напоминающий торпеду или подводную лодку, перемещающийся под водой с целью сбора информации о рельефе дна, о строении верхнего слоя осадков, о наличии на дне предметов и препятствий. Питание аппарата осуществляется от аккумуляторов или другого типа батарей. Некоторые разновидности АНПА способны погружаться до глубины 6000 м. АНПА используются для площадных съёмок, для мониторинга подводных объектов, например трубопроводов, поиска и обезвреживания подводных мин.

Рисунок 1 - Робот "Подводный инспектор", созданный при участии Инженерной школы ДВФУ, может работать как под водой, так и на земле

Рисунок 2 - в работе морской автономный робототехнический комплекс: включает малогабаритные автономные необитаемые подводный и водный аппараты /АНПА и АНВА/ (фото "ИПМТ")

Телеуправляемый подводный аппарат (ТНПА) - это подводный аппарат, часто называемый роботом, который управляется оператором или группой операторов (пилот, навигатор и др.) с борта судна. Аппарат связан с судном сложным кабелем, через который на аппарат поступают сигналы управления и электропитание, а обратно передаются показания датчиков и видео сигналы. ТНПА используются для осмотровых работ, для спасательных операций, для извлечения крупных предметов со дна, для работ по обеспечиванию объектов нефтегазового комплекса (поддержка бурения, осмотр трасс газопроводов, осмотр структур на наличие поломок, выполнение операций с вентилями и задвижками), для операций по разминированию, для научных приложений, для поддержки водолазных работ, для работ по поддержанию рыбных ферм, для археологических изысканий, для осмотра городских коммуникаций, для осмотра судов на наличие контрабандных товаров, прикреплённых снаружи к борту и др. Круг решаемых задач постоянно расширяется и парк аппаратов стремительно растёт. Работа аппаратом намного дешевле дорогостоящих водолазных работ несмотря на то, что первоначальные вложения достаточно велики, хотя работа аппаратом не может заменить весь спектр водолазных работ.В этой нише работают как маленькие аппараты класса «Гном» (весом ок. 40кг.), так и большие машины, весом до нескольких тонн, которые могут варить трубы, а также выполнять другие серьезные работы под водой.



Рисунок 3 - Телеуправляемый подводный аппарат ГНОМ Стандарт – Дайвекс

Рисунок 4 - Телеуправляемый подводный аппарат COMANCHE

Подводные обитаемые аппараты

По конструктивным особенностям в отдельные группы можно выделить аппараты следующих категорий:

Батиска́ф автономный (самоходный) подводный аппарат для океанографических и других исследований на больших глубинах. Основное отличие батискафа от «классических» подводных лодок состоит в том, что батискаф имеет лёгкий корпус, представляющий собой поплавок, заполненный для создания положительной плавучести бензином или иным мало сжимаемым веществом легче воды, несущий под собой прочный корпус, как правило изготовленный в виде полой сферы - гондолы (аналог батисферы), в которой в условиях нормального атмосферного давления находятся аппаратура, пульты управления и экипаж. Движется батискаф с помощью гребных винтов, приводимых в движение электромоторами.

Рисунок 5 - Батискаф "Мир" готовится к погружению.

Батипла́н или подводный самолёт (от др.-гр. βαθύς - «глубокий» и лат. planum - «плоскость») - неавтономный подводный аппарат, который использует для погружения гидродинамическую силу «подводных крыльев» вместо балластных цистерн. Батипланы используются для наблюдения под водой за работой тралов, подводных кино-фотосъёмок, для наблюдений за поведением рыбы в косяке в естественных условиях и в зоне действия рыболовного орудия и для других подводных исследований.

По способу погружения батиплан классифицируется как подводный аппарат с динамическим принципом погружения. Батипланы транспортируются на специально оборудованных судах, а в рабочем положении буксируются ими. Батипланы способны погружаться на глубину до 100-200 метров. Экипаж составляет 1-2 человека.

По принципу действия батиплан является «подводным планёром» с постоянной избыточной плавучестью; спущенный с судна он плавает на поверхности воды, а при буксировке под действием гидродинамических сил погружается и может быть удержан рулями на заданной глубине. Находящийся в прочном герметичном корпусе пилот-наблюдатель может управлять батипланом при помощи рулевого устройства.

.

Рисунок 6 - Батиплан "Тетис". Музей океанографии в Калининграде.

Аппараты с отсеком для выхода водолазов в воду - оснащены гипербарическим отсеком для транспортировки водолазов

Рисунок 7

Спасательные аппараты - оснащены пассажирским отсеком, стыковочным устройством и шлюзовой камерой для спасения экипажей подводных лодок.

Спасательные глубоководные аппараты типа «Приз» (проект 1855) - тип подводных аппаратов, использующихся Военно-морским флотом России.

В прессе СГА типа «Приз» часто называют батискафами, что не является верным.

Глубина погружения аппаратов «Приз» гораздо меньше любого из существовавших батискафов. Их компоновка аналогична компоновке подводных лодок (аккумуляторы находятся в прочном корпусе, там же находится двигательная установка, а вал выходит через прочный корпус).

В отличие от батискафов, аппараты «Приз» предназначены не для выполнения научных и океанографических исследований, а, прежде всего, для спасения экипажей аварийных подводных лодок с больших глубин: они могут непосредственно стыковаться к аварийным выходам подлодок. Материал корпуса, титан, позволил обеспечить работу аппаратов на глубинах до 1 000 м. Радиоэлектронное оборудование, входящее в комплект навигационного комплекса «Приза» позволяет самостоятельно определять своё подводное местонахождение и обнаруживать субмарину.

Рисунок 8 - Глубоководный спасательный аппарат типа «Приз»

Многоместные туристические подводные лодки - служат для подводных экскурсий, имеют пассажирский салон и дополнительные иллюминаторы.

ПОДВОДНЫЙ АППАРАТ (а. submarine unit; н. Unterwassergerat; ф. appareil sous-marin; и. equipo submarino) — судно или техническое устройство, перемещающееся в толще воды и (или) по дну и используемое для научных исследований, поисковых и аварийно-спасательных операций, а также производственных работ под водой. В частности, подводные аппараты применяются для проведения геологических и геофизических измерений вблизи океанского дна с целью изучения геологического строения дна океана , состава слагающих его пород, поиска и разведки месторождений полезных ископаемых в Мировом океане , а также при эксплуатации месторождений, для осмотра и ремонта буровых платформ и т.п.

Подводные аппараты делятся на 3 основных класса: обитаемые нормобарические, обитаемые гипербарические и необитаемые (телеуправляемые). Подводные аппараты классифицируются также по типу выполняемых работ — на гидрофизические, геологические, поисковые, специализированные рабочие, осмотровые и др.; по характеру перемещений в водной среде — на буксируемые, плавающие, перемещающиеся (в т.ч. шагающие) по грунту; по способу подачи электропитания — на привязные, автономные и комбинированные; по глубине проведения работ — для малых глубин (до 600 м), средних глубин (до 2000 м) и глубоководные (свыше 2000 м).

К нормобарическим обитаемым подводным аппаратам относятся привязные и автономные исследовательские и транспортные средства, в герметическом корпусе которых поддерживаются параметры дыхательной смеси, близкие к нормативным атмосферным. Примером аппаратов этого типа является подводный аппарат "Пайсис", предназначенный для океанологических (в т.ч. геологических) исследований (рис. 1).

Первые геологические исследования с применением подводных аппаратов были проведены в 1962 с борта французского батискафа "Архимед" в жёлобе Пуэрто-Рико (около 9000 м). В последующие годы выполнялись обследования береговых каньонов, коралловых рифов , полей железомарганцевых конкреций и фосфоритов . С 70-х гг. было организовано несколько американских и французских геологических экспедиций по изучению океанических рифтовых зон (в 1973 — Срединно-Атлантического рифта , в 1978-79 — зоны восточно-Тихоокеанского поднятия и Галапагосского рифта).

Первые советские геологические экспедиции с использованием подводного аппарата типа "Пайсис", "Звук", "Манта" были проведены на озере Байкал (1977), в Красноморском рифте (1979-80) и рифте Рейкьянес в

В трудах древнегреческого историка Геродота (V в. до н. э.) рассказывается о неком подводном костюме, применяемом его современниками для погружения на дно реки. По словам древнегреческого философа Аристотеля (384-322 гг. до н. э.), при завоевании финикийского города Тира (332 г. до н. э.) войско Александра Македонского использовало водолазный колокол. Древнегреческий писатель Плутарх в одном из своих сочинений, датированном 35 г. до н. э., упоминает о левантийских водолазах, а Дионисий Кассий описал примитивное подводное снаряжение, которое применил при нападении на римскую галерную эскадру императора Септимия Севера (III в. н. э.) отряд византийских подводников.

Позднее, в 1538 г., в испанском городе Толедо также производились опыты с водолазным колоколом. В истории известно много примеров использования для дыхания под водой тростниковых трубок, а также полых стеблей камыша.

Однако эти разнообразные приспособления не смогли помочь человечеству проникнуть в морские глубины. Только с развитием промышленности и науки, с появлением новых технологий добычи и обработки металлов появилась возможность создания подводного судна, способного покорить глубины океана.

Первые иностранные подводные суда появились в XVII в. Голландский врач Корнелий Ван-Дребель, придворный английского короля, в 1620 г. погружался в воду в деревянных бочках, обтянутых промасленной кожей. Наиболее крупная из них была рассчитана на 20 человек и предназначалась для увеселительных прогулок придворных. После смерти изобретателя в 1634 г. никаких записей о его опытах не осталось.

В 1718 г. плотник из подмосковного села Покровское Ефим Никонов подал на имя Петра I челобитную, в которой уверял, что сможет построить «потаенное судно». Царь поверил талантливому самоучке, вызвал его в Петербург и внимательно выслушал. Уже в 1721 г. на галерном дворе в присутствии Петра I конструкция плотника была испытана.

Она погружалась в воду при помощи кожаных мешков, которые заполнялись водой. Передвигалось судно за счет четырех пар весел. Однако, непонятно каким образом оно всплывало, так как на борту отсутствовал насос или какая-либо конструкция с аналогичными функциями.

В годы войны за независимость американского народа против англичан (1775-1783 гг.) проходило испытание подлодки «Черепаха», изобретенной американским механиком Давидом Бушнелем.

Форма подводного аппарата напоминала грецкий орех и состояла из двух медных половинок. Она была рассчитана на одного человека и перемещалась с помощью гребного винта, приводимого в движение вращением ручного привода. Судно погружалось за счет второго гребного винта при заполнении балластной цистерны водой. На его борту находилась пороховая мина с часовым механизмом, предназначенная для присоединения ко дну корабжя противника. С этой целью в верхней части корпуса лодки, возле второго гребного винта, располагалось специальное квадратное гнездо, в которое вставлялся бурав, вращающийся из внутренней части, и к нему подвязывалась прочной тонкой веревкой (штертом) пороховая мина. Во время атаки вражеского судна бур прикреплялся к деревянной обшивке днища корабля и оставался на ней вместе с миной, взрывавшейся после удаления лодки.

Несмотря на то, что «Черепаха» имела неплохое вооружение, при использовании она не оправдала себя. Первый раз субмарина выступила против 64-пушечного британского корабля «Орел», днище которого оказалось обшитым медью, поэтому бурав не удалось ввернуть. Объектом второй атаки стал английский фрегат «Цербер». На этот раз подводная лодка не успела даже добраться до него, так как была обстреляна неприятелем и потоплена.

В 1834 г. в Петербурге на Александровском литейном заводе построили подводную лодку, вооруженную шестью пусковыми ракетными установками.

Руководил проектом военный инженер А. А. Шильдер. В подводном положении конструкция перемещалась за счет специальных гребков, сделанных в виде утиных лапок. Они располагались вне корпуса конструкции попарно на каждом борту. В действие их приводили матросы-гребцы. В надводном положении лодка ходила под парусом на складной мачте. Подводный корабль Шильдера имел продолговатый яйцеобразный корпус, слегка сплющенный с боков. Его длина составляла 6 м, ширина - 1,5 м, высота - 2 м. При водоизмещении равном почти 16 т, лодка перемещалась со скоростью не более 1,5 км/ч. Необходимо отметить, что изобретатель создал свое детище из железа тогда, когда за границей применение данного материала в судостроении еще не практиковалось.

На подводной лодке Шильдера впервые в мире установили оптическая труба для наблюдения за поверхностью моря. Она была устроена по принципу горизонтоскопа М. В. Ломоносова. В то время за рубежом подводные корабли не имели подобного приспособления.

Иностранные изобретатели крепили на своих конструкциях специальные рубки со смотровыми иллюминаторами. Но свет, как известно, плохо проникает через толщу воды. Вследствие этого экипаж лодки, находясь даже на незначительной глубине, был не способен разглядеть что-либо на поверхности моря. Для ориентировки им приходилось всплывать на такую глубину, чтобы рубка с иллюминаторами находилась выше уровня воды. В результате подлодка демаскировала себя и лишалась своего основного преимущества - скрытности. Шильдер был первым, кто практически использовал на подводном корабле оптическую трубу - прародительницу современных перископов, без которых в наши дни не обходится ни одна субмарина.

Конструкцию Шильдера спустили на воду в начале июля 1834 г. Испытания проводились на Неве по обширной программе. Она состояла из маневрирования в надводном и подводном положениях, действий против кораблей условного противника и обстрела их ракетами. Вскоре субмарину отвели в Кронштадт и продолжали проводить эксперименты уже в Финском заливе. Благодаря этому изобретатель накопил опыт, позволивший ему разработать проект более совершенной подводной лодки.

Военное министерство, выделяя Шильдеру средства на построение еще одного подводного корабля, поставило перед ним ряд условий, по которым новая конструкция должна обладать достаточной мореходностью и автономностью, т. е. способностью максимум на трое суток уходить из базы в море, и быть удобной для транспортировки по суше конной тягой, состоящей из шести лошадей. Выполнение последнего требования являлось необходимым для того, чтобы в будущем у командования появилась возможность осуществлять секретные переброски подводных кораблей из одного пункта побережья в другой.

Вторая лодка была построена в 1835 г. Она долгое время испытывалась как на Неве, так и на Кронштадтском рейде. В течение трех лет изобретатель неустанно совершенствовал свою конструкцию. В 1841 г. вследствие плохой погоды подводный корабль Шильдера не выполнил поставленной задачи. В результате ему отказали в финансировании дальнейших опытов, и труды Александра Андреевича были преданы забвению. Однако через семнадцать лет немец Бауэр построил на деньги российского правительства подводное судно «Морской черт», которое представляло собой точную копию субмарины Шильдера.

В 1866 г. по проекту русского изобретателя И. Ф. Александровского сконструировали подводная лодка, на которой установили двигатель, работающий на сжатом воздухе.

Он обеспечивал скорость хода не более полутора узлов и дальность плавания всего на три мили. Это был первый подводный корабль, который вошел в состав русского военно-морского флота. Он представлял собой оригинальное плавучее сооружение длиной около 30 м и шириной около 4 м. Полное водоизмещение лодки составляло 65 т.

Обшивку корпуса изготовили из листовой стали толщиной 12 мм. Она крепилась заклепками к семнадцати шпангоутам, которые являлись металлическим каркасом подводного корабля. Носовая часть конструкции Александровского, где располагался командный пункт и устанавливался магнитный компас, была обшита медью. Это предохраняло навигационный прибор от влияния больших масс железа и обеспечивало точность его показаний.

В кормовой части подводной лодки изобретатель расположил один над другим два гребных винта. Они приводились во вращение двумя трехцилиндровыми семидесятивальными пневматическими двигателями, которые работали на сжатом воздухе. Внутри конструкции Александровский установил три цистерны для приема водяного балласта при погружении. Их общая вместимость составляла около 10 т воды. Кроме того, в кормовой и носовой частях подводного корабля находились по одной небольшой цистерне. С их помощью регулировался дифферент лодки в подводном положении. Цистерны заполнялись водой через приемные клапаны (кингстоны), которые открывались и закрывались внутри конструкции.

Всплытие подводного корабля на поверхность происходило с помощью сжатого воздуха. С этой целью к балластным цистернам был подведен от баллонов со сжатым воздухом специальный воздухопровод. По нему в случае возникновения необходимости всплытия пускали под большим давлением воздух, который поступал в цистерны и выталкивал из них воду. Данное открытие Александровского до сих пор применяется на субмаринах всех флотов мира.

Испытания подводного корабля провели 19 июля 1866 г. в Кронштадте. Они прошли весьма успешно, но сам изобретатель остался недоволен ходом экспериментов. Он решил внести в кон струкцию лодки ряд усовершенствований, прежде чем продемонстрировать свое творение приемной комиссии. Новые испытания подводного корабля прошли лишь через год. Результаты превзошли все ожидания конструктора.

Вскоре на подлодку назначили военную команду из двадцати трех человек. В 1869 г. субмарина была переведена для проведения дальнейших испытаний в Транзунд, где она успешно выполнила задачу по преодолению дистанции равной 0,5 мили на глубине 5 м.

Спустя некоторое время Морское ведомство предложило специальной комиссии вновь проверить боевые и технические возможности изобретения Александровского. С этой целью был отведен полуторамильный маршрут близ Кронштадта. Пройдя положенную дистанцию, подводный корабль не смог удержаться на заданной глубине. Конструктор считал, что лодка не выполнила поставленной задачи в связи с тем, что район испытаний не являлся глубоководным.В 1871 г. в районе Бьеркэ-зунда поставили новые опыты над субмариной. Геометрически закрытый подводный корабль был спущен без личного состава на двадцатипятиметровую глубину. Через тридцать минут его подняли и тщательный осмотр показал, что корпус отлично выдержал давление и не дал течи.

В этом же году Московское ведомство заявило, что необходимо проверить прочность подводной лодки на глубине 30 м. Опасения Александровского оправдались. Во время испытаний корпус не выдержал давления воды, и корабль затонул. Только через два года конструктору удалось добиться организации работ по поднятию его изобретения на поверхность. Но дальнейшие опыты с подлодкой прекратили.

В 1877 г. по проекту Степана Карловича Джевецкого в России построили первый карликовый подводный корабль.

Талантливый инженер-изобретатель создал проект миниатюрного подводного челна, длина которого составляла 4 м. В конструкции помещался всего один человек, который с помощью ножных педалей приводил во вращение гребной винт, за счет которого лодка передвигалась.

Металлический корпус подводного челна состоял из двух частей. В нижней размещалась камера со сжатым воздухом, необходимым для вытеснения воды из балластной цистерны при всплытии лодки на поверхность. В верхней части находились разнообразные механизмы и специальное сиденье командира подводного корабля. Человек располагался в лодке таким образом, что его голова оказывалась под прозрачным колпаком из толстого стекла, выступающим над судном. Если челн плыл в надводном или полупогруженном положении, командир мог наблюдать за морем и береговыми ориентирами.

Подводный корабль Джевецкого был вооружен миной с особыми резиновыми присосками и запалом, который воспламенялся за счет тока от гальванической батареи. Для того чтобы командир субмарины мог прикрепить взрывное устройство к днищу вражеского судна, изобретатель предусмотрел в корпусе подлодки два круглых отверстия, из которых наружу выступали длинные гибкие резиновые рукавицы. После установки мины подводный челн отходил на безопасное расстояние, постепенно сматывая с катушки провод, соединяющий взрывное устройства с гальванической батареей. Командир субмарины мог произвести подрыв корабля противника в любой удобный для себя момент.

В 1879 г. Джевецкий создал подводный аппарат, который отличался от предыдущего не только размерами, но и рядом усовершенствований. Корабль вмещал уже четырех человек, сидящих попарно спиной к спине. Два гребных винта, кормовой и носовой, приводил во вращение с помощью ножных педалей весь экипаж. От ножного привода работали воздушный и водный насосы. Первый служил очистителем воздуха внутри лодки, второй откачивал воду из цистерн. Вместо прозрачного купола на подводном аппарате была установлена оптическая труба.

В качестве вооружения использовалась мина, которая устанавливалась с помощью оригинального приспособления. Оно состояло из двух пустых резиновых пузырей, связанных друг с другом тонким прочным канатиком. К ним мина и подвешивалась. Когда подводная лодка настигала вражеский корабль, в резиновые шары впускался воздух, и они всплывали вместе миной к днищу судна неприятеля. В 1879 г. произвели испытания подводного аппарата Джевецкого. Они прошли настолько успешно, что Военное министерство заказало пятьдесят подводных судов данного типа.

В 1884 г. Джевецкий создал лодку с электродвигателем мощностью 1 л. с.

Источником энергии служила аккумуляторная батарея. Во время испытаний в Петербурге субмарина проплыла против течения Невы со скоростью 4 узла.

В 1906 г. субмарина была заложена на стапелях Металлического завода в Петербурге. Ее длина составляла 36,0 м, ширина - 3,2 м, водоизмещение - 146 т. Лодка перемещалась за счет двух бензиновых моторов мощностью по 130 л. с. Во время испытаний подводный корабль продемонстрировал неплохие результаты. Но использовать его в военных операциях не представлялось возможным. При движении под водой подлодка демаскировала себя, так как оставляла пузырчатый след. Кроме того, внутренние помещения «Почтового» были загромождены различными механизмами и устройствами, что ухудшало бытовые условия личного состава.

Появление аккумуляторных батарей и сравнительно надежных двигателей внутреннего сгорания позволило создать энергетическую установку для подводных лодок. Изобретателям удалось воплотить в жизнь хорошо известную в наши дни схему: аккумуляторная батарея, электродвигатель-генератор, двигатель внутреннего сгорания.

Одновременно с энергетическими установками произошло усовершенствование и вооружения подводных кораблей. В 1865 г. конструктор Александровский создал первую в мире самодвижущуюся мину-торпеду. Позднее Джевецкий изобрел торпедные аппараты, которые устанавливались на корпусе подлодки. Многие годы они являлись основным оружием отечественных кораблей. Однако построить в XIX в. боевую субмарину было нереально, так как уровень развития электротехники и тепловых двигателей находился на низкой ступени развития.

""Сохранение Подводной лаборатории «Бентос-300» и создание на её основе народного музея гидронавтики в Севастополе (Балаклаве) позволит увековечить уникальную подводную лабораторию и сохранит историческую память о созданной в России подводной техники. Такой уникальный музей не позволит предать забвению славные страницы из истории гидронавтики в России и будет чрезвычайно интересен для проведения популяризаторской, образовательной и воспитательной деятельности на территории Севастополя и Крыма. Музей, стоящий на воде, станет своеобразной «визитной карточкой» Севастополя (Балаклавы). Подводная лаборатория «Бентос-300» является инженерным творением подводного судостроения России советского периода. Она представляет собой, одновременно, подводный аппарат, подводную лодку, подводный дом, водолазный комплекс и научную лабораторию. Проект предусматривает воссоздание первоначального облика Подводной лаборатории "Бентос-300", ремонт металлического легкого и прочного корпуса, насыщение отсеков прочного корпуса материалами по истории гидронавтики и создании в подводной части прочного корпуса обстановки, в которой работали и жили гидронавты-исследователи.
Посетители музея могут ознакомиться с разнообразными материалами, рассказывающими о истории гидронавтики, побывать в обстановке, в которой работали и жили гидронавты -исследователи, через иллюминаторы, расположенные под водой, смогут наблюдать жизнь подводных обитателей Черного моря, а работа аттракциона "Батискаф" создаст у посетителей ощущения реального погружения подводного аппарата под воду"

"Цель №1. 1. Создание в городе Севастополе музея гидронавтики на основе Подводной лаборатории «Бентос-300». должно стать действенным инструментом по объединению всех кто принимал участие в проектировании, строительстве и эксплуатации подводных аппаратов России. Такого рода музей не позволит стереть с нашей памяти подводные завоевания сделанные гидронавтами-исследователями с помощью подводной техники и может послужить возрождению гидронавтики в России и как следствие повысит интерес к проведению в будущем подводных исследований для открытия новых энергетических, пищевых и полезных ресурсов. "

"Задача №1. Воссоздать первоначальный облик Подводной лаборатории «Бентос-300», отремонтировать легкий и прочный корпус лаборатории и придать ей статус Музея гидронавтики.
Задача №2. Приобрести и установить оборудование, необходимое для обеспечения Подводной лаборатории "Бентос -300" электрической энергией, водой и принудительной вентиляцией.
Задача №3. Восстановить и создать внутри прочного корпуса элементы первоначальной обстановки в которой работали и жили гидронавты. Спроектировать и установить аттракцион "Батискаф",воспроизводящий обстановку реального погружения подводного аппарата под воду.
Задача №4. Произвести внутреннее насыщение отсеков прочного корпуса лаборатории экспонатами, стендами, фото и видеоматериалами, рассказывающими о истории гидронавтики в России."

"Сохранение исторической памяти подводно-технических средств созданных в России гражданского и военного назначения волнует значительную часть общества. Музей гидронавтики, являющийся объектом культуры, станет центром воспитания и дополнительного образования, профориентационной и исторической направленности. Содружество с военными и гражданскими ветеранами- гидронавтами, учащимися кадетского училища, студентами даст возможность в процессе реализации проекта задействовать не только участников проекта, но и представителей общественных групп, интересующихся подводной тематикой. Большая часть мероприятий будет проводиться на базе Подводной лаборатории «Бентос-300». Такой музей даст уникальную возможность объединить людей разных поколений увлеченных идеей покорения гидрокосмоса."

– это специальные технические средства, предназначенные для проведения подводных научных исследований, поисковых операций, всевозможных ремонтных и спасательных работ.

К глубоководным подводным аппаратам относятся аппараты с глубиной погружения свыше 600 м.

По функциональному назначению глубоководные подводные аппараты могут быть разделены на океанографические для научно-исследовательских наблюдений и аппараты для поисково-спасательных и монтажно-демонтажных работ .

В зависимости от предназначения они оборудуются системами поиска и наведения на объект, различного рода захватами и инструментами для выполнения работ.

Глубоководные подводные аппараты бывают обитаемые и необитаемые

Обитаемые глубоководные подводные аппараты управляются экипажем (2-6 чел.), находящимся в прочном герметическом корпусе, имеют системы жизнеобеспечения, средства связи и навигации, органы управления манипуляторами, средства энергоснабжения (аккумуляторы) и средства аварийного спасения. Форма прочного корпуса глубоководного подводного аппарата в зависимости от глубины погружения и предназначения бывает цилиндрической (гидростаты) с подкреплением наружной обшивки шпангоутами, сферической или полусферической (батисферы). В качестве материала корпуса используются сталь, алюминий, титан, а также армированный стеклопластик. Прочный корпус глубоководного подводного аппарата имеет входной люк, иллюминаторы, а у спасательных аппаратов в нижней части корпуса есть стыковочный узел и шлюзовая камера. С ростом глубины использования глубоководного подводного аппарата меняются конструкция и форма прочного корпуса, растет его масса. До глубины 2000 м оболочка корпуса подкреплена шпангоутами. Глубоководные подводные аппараты для больших глубин имеют толстостенный прочный корпус, выполненный из легированной стали методом ковки. Так, толщина стенок батискафа «Триест», на котором 23 января 1960 года была достигнута рекордная глубина 10919 м, составляет 105 мм. Для придания положительной плавучести прочному корпусу глубоководного подводного аппарата, предназначенному для погружения на глубину свыше 6000 м, необходимо наличие дополнительного объема, заполненного легковесным заполнителем (чаще всего бензин с плотностью 0,7-3).

Автономность обитаемых глубоководных подводных аппаратов от 8-12 ч до 2-4 недель, скорость 6-12 км/ч, на некоторых имеется всплывающая рубка для аварийного спасения экипажа. Прочный корпус глубоководного подводного аппарата снаружи закрыт проницаемым легким корпусом, служащим для придания аппарату гидродинамических характеристик, размещения движительно-рулевого комплекса, исполнительных устройств манипуляторов, светильников, телевизионной и научной аппаратуры. Между прочным и легким корпусами находятся балластные цистерны и сбрасываемый в аварийных ситуациях балласт.

Необитаемые глубоководные подводные аппараты - привязные, буксируемые – управляются по кабель-тросу с пульта, расположенного на судне-носителе. Они двигаются в толще воды либо перемещаются по дну. Оборудованы телевизионной аппаратурой, светильниками, имеют стабилизацию глубины, манипуляторы, их навигационная система связана с навигационной системой судна-носителя, передача электроэнергии – по кабель-тросу (погружение до 100 м). Самоходные аппараты снабжены движительно-рулевыми комплексами, управляющимися по заданной программе. Необитаемые глубоководные подводные аппараты используются в основном при поиске и обследовании затонувших объектов и для подводного бурения. Развитие глубоководных подводных аппаратов идет по пути создания специализированных необитаемых аппаратов.