Математическое исследование. Математические методы в исследованиях

Сравним методику применения математики в практических исследованиях с методикой других естественных наук. Такие науки, как физика, химия, биология изучают непосредственно сам реальный объект (возможно в уменьшенных масштабах и в лабораторных условиях). Научные результаты, после необходимой проверки, также непосредственно можно применить на практике. Математика же изучает не сами объекты, а их модели. Описание объекта и формулировка проблемы переводятся с обычного языка на «язык математики» (формализуются), в результате чего получается математическая модель. Далее эта модель исследуется как математическая задача. Полученные научные результаты не сразу применяются на практике, так как они сформулированы на математическом языке. Поэтому осуществляется обратный процесс - содержательная интерпретация (на языке исходной проблемы) полученных математических результатов. Только после этого решается вопрос об их применении на практике.

Неотъемлемой частью методики прикладной математики является всесторонний анализ реальной проблемы, предшествующий ее математическому моделированию. В целом системный анализ проблемы, предполагает выполнение следующих этапов:

· гуманитарный (доматематический) анализ проблемы;

· математическое исследование проблемы;

· применение полученных результатов на практике.

Проведение такого системного анализа каждой конкретной проблемы должно осуществляться исследовательской группой, включающей экономистов (как постановщиков проблемы или заказчиков), математиков, юристов, социологов, психологов, экологов и т. д. Причем математики, как основные исследователи, должны участвовать не только в «решении» задачи, но и в ее постановке, а также во внедрении результатов на практике.

Для проведения математических исследований экономической задачи требуется выполнение следующих основных этапов:

1. изучение предметной области и определение цели исследования;

2. формулировка проблемы;

3. сбор данных (статистических, экспертных и прочих);

4. построение математической модели;

5. выбор (или разработка) вычислительного метода и построение алгоритма решения задачи;

6. программирование алгоритма и отладка программы;

7. проверка качества модели на контрольном примере;

8. внедрение результатов на практике.

Этапы 1 -3 относятся к доматематической части исследования. Предметная область должна быть досконально изучена самими экономистами для того, чтобы они, как заказчики, могли четко сформулировать проблему и определить цели перед исследователями. Исследователям должны быть предоставлены все необходимые документальные и статистические данные в исчерпывающем объеме. Математиками производится организация, хранения, анализ и обработка данных, предоставленных им в удобной (электронной) форме заказчиками.

Этапы 4 -7 относятся к математической части исследований. Результатом этого этапа является формулировка исходной проблемы в виде строгой математической задачи. Математическую модель редко можно «подобрать» из числа имеющихся, известных моделей (рис.1.1). Процесс подбора параметров модели таким образом, чтобы она соответствовала изучаемому объекту, называется идентификацией модели . Исходя из характера полученной модели (задачи) и цели исследования выбирают либо известный метод, либо приспосабливают (модифицируют) известный метод, либо разрабатывают новый. После этого составляют алгоритм (порядок решения задачи) и программу для ЭВМ. Полученные с помощью этой программы результаты анализируют: решают тестовые задачи, вводят необходимые изменения и исправления в алгоритм и программу.

Если для «чистой» математики традиционным является однократный выбор математической модели и однократная формулировка допущений в самом начале исследования, то в прикладных работах часто бывает полезно вернуться к модели и внести в нее исправления после того, как первый тур пробных расчетов уже произведен. Более того, часто оказывается плодотворным сопоставление моделей, когда одно и то же явление описывается не одной, а несколькими моделями. Если выводы оказываются (приблизительно) одними и теми же при разных моделях, разных методах исследования - это является свидетельством правильности расчетов, адекватности модели самому объекту, объективности выдаваемых рекомендаций.

Заключительный этап 8 проводится совместными усилиями заказчиков и разработчиков модели.

Результаты математических (как и всяких научных) исследований являются только рекомендацией к использованию на практике. Окончательное решение этого вопроса - применять модель или нет - зависит от заказчика, т. е. от лица ответственного за исход и за последствия, к которым приведет применение рекомендуемых результатов.

Для построения математической модели конкретной экономической задачи (проблемы) рекомендуется выполнение следующей последовательности работ:

1. определение известных и неизвестных величин, а также существующих условий и предпосылок (что дано и что требуется найти?);

2. выявление важнейших факторов проблемы;

3. выявление управляемых и неуправляемых параметров;

4. математическое описание посредством уравнений, неравенств, функций и иных отношений взаимосвязей между элементами модели (параметрами, переменными), исходя из содержания рассматриваемой задачи.

Известные параметры задачи относительно ее математической модели считаются внешними (заданными априори, т. е. до построения модели). В экономической литературе они называются экзогенными переменными . Значение же изначально неизвестных переменных вычисляются в результате исследования модели, поэтому по отношению к модели они считаются внутренними . В экономической литературе они называются эндогенными переменными .

В § 2 под важнейшими понимаются факторы, которые играют существенную роль в самой задаче и которые, так или иначе, влияют на конечный результат. В § 3 управляемыми называются те параметры задачи, которым можно придавать произвольные числовые значения исходя из условий задачи; неуправляемыми считаются те параметры, значение которых зафиксировано и не подлежит изменению.

С точки зрения назначения, можно выделить описательные модели и модели принятия решения . Описательные модели отражают содержание и основные свойства экономических объектов как таковых. С их помощью вычисляются числовые значения экономических факторов и показателей.

Модели принятия решения помогают найти наилучшие варианты плановых показателей или управленческих решений. Среди них наименее сложным являются оптимизационные модели, посредством которых описываются (моделируются) задачи типа планирования, а наиболее сложными - игровые модели, описывающие задачи конфликтного характера с учетом пересечения различных интересов. Эти модели отличаются от описательных тем, что в них имеется возможность выбора значений управляющих параметров (что отсутствует в описательных моделях).

Примеры составления математических моделей

Пример 1.1. Пусть некоторый экономический регион производит несколько видов продуктов исключительно своими силами и только для населения данного региона. Предполагается, что технологический процесс отработан, а спрос населения на эти товары изучен. Надо определить годовой объем выпуска продуктов, с учетом того, что этот объем должен обеспечить как конечное, так и производственное потребление.

Составим математическую модель этой задачи. По условию даны: виды продуктов, спрос на них и технологический процесс; требуется найти объем выпуска каждого вида продукта Обозначим известные величины: - спрос населения на -й продукт ; - количество i-го продукта, необходимое для выпуска единицы -го продукта по данной технологии . Обозначим неизвестные величины: - объем выпуска -го продукта . Совокупность называется вектором спроса, числа - технологическими коэффициентами, а совокупность - вектором выпуска. По условию задачи вектор распределяется на две части: на конечное потребление (вектор ) и на воспроизводство (вектор ). Вычислим ту часть вектора которая идет на воспроизводство. В силу обозначений для производства количества -го товара идет количества -го товара. Тогда сумма показывает ту величину -го товара, которая нужна для всего выпуска . Следовательно, должно выполняться равенство:

Обобщая это рассуждение на все виды продуктов, приходим к искомой модели:

Решая полученную систему линейных уравнений относительно находим требуемый вектор выпуска.

Для того чтобы написать эту модель в более компактной (векторной) форме, введем обозначения:

Квадратная матрица А (размером ) называется технологической матрицей. Очевидно, модель можно записать в виде: или

Получили классическую модель «Затраты-выпуск», автором которой является известный американский экономист В. Леонтьев.

Пример 1.2. Нефтеперерабатывающий завод располагает двумя сортами нефти: сортом в количестве 10 единиц, сортом - 15 единиц. При переработке из нефти получаются два материала: бензин () и мазут (). Имеется три варианта технологического процесса переработки:

I : 1ед.А + 2ед.В дает 3ед.Б + 2ед.М ;

II :2ед.А + 1ед.В дает 1ед.Б + 5ед.М ;

III :2ед.А + 2ед.В дает 1ед.Б + 2ед.М.

Цена бензина - 10 долл. за единицу, мазута - 1 долл. за единицу. Требуется определить наиболее выгодное сочетание технологических процессов переработки имеющегося количества нефти.

Перед моделированием уточним следующие моменты. Из условия задачи следует, что «выгодность» технологического процесса для завода следует понимать в смысле получения максимального дохода от реализации своей готовой продукции (бензина и мазута). В связи с этим понятно, что «выбор (принятие) решения» завода состоит в определении того, какую технологию и сколько раз применить. Очевидно, что таких возможных вариантов достаточно много.

Обозначим неизвестные величины: - количество использования -го технологического процесса . Остальные параметры модели (запасы сортов нефти, цены бензина и мазута) известны .

Тогда одно конкретное решение завода сводится к выбору одного вектора , для которого выручка завода равна долл. Здесь 32 долл. - это доход, полученный от одного применения первого технологического процесса (10 долл. 3ед.Б + 1 долл. 2ед.М = 32 долл.). Аналогичный смысл имеют коэффициенты 15 и 12 для второго и третьего технологических процессов соответственно. Учет запаса нефти приводит к следующим условиям:

для сорта А : ,

для сорта В : ,

где в первом неравенстве коэффициенты 1, 2, 2 - это нормы расхода нефти сорта А для одноразового применения технологических процессов I , II , III соответственно. Коэффициенты второго неравенства имеют аналогичный смысл для нефти сорта В .

Математическая модель в целом имеет вид:

Найти такой вектор , чтобы

максимизировать

при выполнении условий:

,

,

.

Сокращенная форма этой записи имеет вид:

при ограничениях

, (1.4.2)

,

Получили так называемую задачу линейного программирования. Модель (1.4.2.) является примером оптимизационной модели детерминированного типа (с вполне определенными элементами).

Пример 1.3. Инвестору требуется определить наилучший набор из акций, облигаций и других ценных бумаг для приобретения их на некоторую сумму с целью получения определенной прибыли с минимальным риском для себя. Прибыль на каждый доллар, вложенный в ценную бумагу - го вида, характеризуется двумя показателями: ожидаемой прибылью и фактической прибылью. Для инвестора желательно, чтобы ожидаемая прибыль на один доллар вложений была для всего набора ценных бумаг не ниже заданной величины . Заметим, что для правильного моделирования этой задачи от математика требуются определенные базовые знания в области портфельной теории ценных бумаг. Обозначим известные параметры задачи: - число разновидностей ценных бумаг; - фактическая прибыль (случайное число) от -го вида ценной бумаги - ожидаемая прибыль от -го вида ценной бумаги. Обозначим неизвестные величины: - средства, выделенные для приобретения ценных бумаг вида . В силу обозначений вся инвестированная сумма определяется как . Для упрощения модели введем новые величины

Таким образом, - это доля от всех средств, выделяемая для приобретения ценных бумаг вида . Очевидно, что . Из условия задачи видно, что цель инвестора - достижение определенного уровня прибыли с минимальным риском. Содержательно риск - это мера отклонения фактической прибыли от ожидаемой. Поэтому его можно отождествить с ковариацией

прибыли для ценных бумаг вида и вида . Здесь М - обозначение математического ожидания. Математическая модель исходной задачи имеет вид:

(1.4.3)

Получили известную модель Марковица для оптимизации структуры портфеля ценных бумаг. Модель (1.4.3.) является примеров оптимизационной модели стохастического типа (с элементами случайности).

Пример 1.4. На базе торговой организации имеется типов одного из товаров ассортиментного минимума. В магазин должен быть завезен только один из типов данного товара. Требуется выбрать тот тип товара, который целесообразно завести в магазин. Если товар типа будет пользоваться спросом, то магазин от его реализации получит прибыль , если же он не будет пользоваться спросом - убыток .

И геометрией . Основной отличительный признак анализа в сравнении с другими направлениями - наличие функций переменных величин как предмета исследования. При этом, если элементарные разделы анализа в учебных программах и материалах часто объединяют с элементарной алгеброй (например, существуют многочисленные учебники и курсы с наименованием «Алгебра и начала анализа»), то современный анализ в значительной степени использует методы современных геометрических разделов, прежде всего, дифференциальной геометрии и топологии .

История

Отдельные ответвления от «анализа бесконечно малых», такие как теория обыкновенных дифференциальных уравнений (Эйлер , Иоганн Бернулли , Д’Аламбер), вариационное исчисление (Эйлер, Лагранж), теория аналитических функций (Лагранж, Коши , впоследствии - Риман), начали обособляться ещё в XVIII - первой половине XIX века. Однако началом формирования анализа как самостоятельного современного раздела считаются труды середины XIX века по формализации ключевых понятий классического анализа - вещественного числа , функции , предела , интеграла , прежде всего, в трудах Коши и Больцано , и приобретшие законченную форму к 1870-м - 1880-м годам в работах Вейерштрасса , Дедекинда и Кантора . В этой связи сформировались теория функций вещественной переменной и, в развитии методов работы с аналитическими функциями, - теория функций комплексной переменной . Созданная Кантором в конце XIX века наивная теория множеств дала толчок к появлению понятий метрического и топологического пространств, что в значительной мере изменило весь инструментарий анализа, повысив уровень абстракции изучаемых объектов и переместив фокус с вещественных чисел к нечисловым понятиям.

В начале XX века в основном силами французской математической школы (Жордан , Борель , Лебег , Бэр) была создана теория меры , благодаря которой обобщено понятие интеграла, а также построена теория функций действительной переменной . Также в начале XX века начал формироваться функциональный анализ как самостоятельный подраздел современного анализа, изучающий топологические векторные пространства и их отображения . Термин «функциональный анализ» ввёл Адамар , обозначая ветвь вариационного исчисления, разрабатываемую на рубеже XIX и XX веков группой итальянских и французских математиков (в их числе - Вольтерра , Арцела). В 1900 году Фредгольм публикует статью об интегральных уравнения, как давшую толчок для развития теории интегральных уравнений , развития общей теории интегрирования (Лебег), так и формирования функционального анализа . В 1906 году в работе Гильберта очерчена спектральная теория , в том же году опубликована работа Фреше , в которой впервые в анализ введены абстрактные метрические пространства . В 1910-е - 1920-е годы уточнены понятия отделимости и впервые применены общетопологические методы к анализу (Хаусдорф), освоены функциональные пространства и начато формирование общей теории нормированных пространств (Гильберт, Рис , Банах , Хан). В период 1929-1932 годов сформирована аксиоматическая теория гильбертовых пространств (Джон фон Нейман , Маршалл Стоун , Рис). В 1936 году Соболевым сформулировано понятие обобщённой функции (позднее в 1940-х годах независимо от него к подобному понятию пришёл Лоран Шварц), получившее широкое распространение во многих разделах анализа и нашедшее широкое применение в приложениях (например, обобщённой является δ {\displaystyle \delta } -функция Дирака). В 1930-е - 1950-е годы в функциональном анализе получены значительные результаты за счёт применения общеалгебраических инструментов (векторные решётки , операторные алгебры , банаховы алгебры).

К середине XX века получили самостоятельное развитие такие направления как теория динамических систем и эргодическая теория (Джордж Биркгоф , Колмогоров , фон Нейман), существенно обобщены результаты гармонического анализа за счёт применения общеалгебраических средств - топологических групп и представлений (Вейль , Петер , Понтрягин). Начиная с 1940-х - 1950-х годов методы функционального анализа нашли применение в прикладных сферах, в частности, в работах Канторовича 1930-х - 1940-х годов инструменты функционального анализа использованы в вычислительной математике и экономике (линейное программирование). В 1950-е годы в трудах Понтрягина и учеников в развитие методов вариационного исчисления создана теория оптимального управления .

Начиная со второй половины XX века с развитием дифференциальной топологии к анализу примкнуло новое направление - анализ на многообразиях , получившее название «глобальный анализ» , фактически начавшее формироваться ранее, в 1920-е годы в рамках теории Морса как обобщение вариационного исчисления (называемое Морсом «вариационное исчисление в целом», англ. variation calculus in large ). К этому направлению относят созданные в развитие теории бифуркаций динамических систем (Андронов) такие направления, как теорию особенностей (Уитни , ) и теорию катастроф (Том , и Мазер , ), получившие в 1970-е годы развитие в работах Зимана и Арнольда .

Классический математический анализ

Классический математический анализ - раздел, фактически полностью соответствующий историческому «анализу бесконечно малых », состоит из двух основных компонентов: дифференциального и интегрального исчислений. Основные понятия - предел функции , дифференциал , производная , интеграл , главные результаты - формула Ньютона - Лейбница , связывающая определённый интеграл и первообразную и ряд Тейлора - разложение в ряд бесконечно дифференцируемой функции в окрестности точки.

Под термином «математический анализ» обычно понимают именно этот классический раздел, при этом он используется в основном в учебных программах и материалах. При этом изучение основ анализа входит в большинство среднеобразовательных программ, а более или менее полное изучение предмета включено в программы первых лет высшего образования для широкого круга специальностей, в том числе многих гуманитарных. В англо-американской образовательной традиции для обозначения классического математического анализа используется термин «исчисление» (англ. calculus ).

Теория функций вещественной переменной (иногда именуется кратко - теория функций ) возникла вследствие формализации понятий вещественного числа и функции : если в классических разделах анализа рассматривались только функции, возникающие в конкретных задачах, естественным образом, то в теории функций сами функции становятся предметом изучения, исследуется их поведение, соотношения их свойств. Один из результатов, иллюстрирующих специфику теории функций вещественной переменной - факт, что непрерывная функция может не иметь производной ни в одной точке (притом согласно более ранним представлениям классического математического анализа дифференцируемость всех непрерывных функций не подвергалась сомнению).

Основные направления теории функций вещественной переменной :

Теория функций комплексной переменной

Предмет изучения теории функций комплексной переменной - числовые функции, определённые на комплексной плоскости C 1 {\displaystyle \mathbb {C} ^{1}} или комплексном евклидовом пространстве C n {\displaystyle \mathbb {C} ^{n}} , при этом наиболее тщательно изучены аналитические функции , играющие важную связующую роль практически для всех ветвей математического анализа. В частности, понятие аналитической функции обобщено для произвольных банаховых пространств , тем самым многие результаты теории функций комплексной переменной нашли обобщение в функциональном анализе.

Функциональный анализ

Функциональный анализ как раздел характеризуется наличием в качестве предмета изучения топологических векторных пространств и их отображений с наложенными на них различными алгебраическими и топологическими условиями . Центральную роль в функциональном анализе играют функциональные пространства, классический пример - пространства всех измеримых функций , чья p {\displaystyle p} -я степень интегрируема; при этом уже L 2 {\displaystyle L^{2}} - бесконечномерное пространство (гильбертово пространство), и пространства бесконечных размерностей присущи функциональному анализу настолько, что иногда весь раздел определяется как часть математики, изучающая бесконечномерные пространства и их отображения . Важнейшей формой пространств в классических разделах функционального анализа являются банаховы пространства - нормированные векторные пространства, полные по метрике, порождённой нормой: значительная доля интересных на практике пространств являются таковыми, среди них - все гильбертовы пространства, пространства L p {\displaystyle L^{p}} , пространства Харди , пространства Соболева . Важную роль играют в функциональном анализе играют алгебраические структуры, являющиеся банаховыми пространствами - банаховы решётки и банаховы алгебры (в том числе - C ∗ {\displaystyle C^{*}} -алгебры , алгебры фон Неймана).

В абстрактном гармоническом анализе классические методы обобщены для абстрактных структур с использованием таких понятий, как мера Хаара и представления групп . Важнейший результат коммутативного гармонического анализа - теорема Понтрягина о двойственности , благодаря которой относительно простыми общеалгебраическими средствами описываются практически все классические результаты гармонического анализа. Дальнейшее развитие теории - некоммутативный гармонический анализ, имеющий важные приложения в квантовой механике .

Дифференциальные и интегральные уравнения

В теории интегральных уравнений , кроме классических методов решения, выделяются такие направления, как теория Фредгольма , оказавшая заметное влияние на формирование функционального анализа как самостоятельного раздела, в частности, способствовавшая формированию понятия гильбертова пространства .

Теория динамических систем и эргодическая теория

Из основных направлений изучения дифференциальных уравнений в качестве самостоятельных разделов выделились теория динамических систем , изучающая эволюцию во времени механических систем, и эргодическая теория , нацеленная на обоснование статистической физики . Несмотря на прикладной характер задач, к этим разделам относится широкий пласт понятий и методов общематемического значения, в частности, таковы понятия устойчивости и эргодичности .

Глобальный анализ

Глобальный анализ - раздел анализа, изучающий функции и дифференциальные уравнения на многообразиях и векторных расслоениях ; иногда это направление обозначается как «анализ на многообразиях».

Одно из первых направлений глобального анализа - теория Морса и её применение к задачам о геодезических на римановых многообразиях ; направление получило название «вариационное исчисление в целом». Основные результаты - лемма Морса , описывающая поведение гладких функций на гладких многообразиях в невырожденных особых точках, и такой гомотопический инвариант, как категория Люстерника - Шнирельмана . Многие из конструкций и утверждений обобщены на случай бесконечномерных многообразий (гильбертовых многообразий * , банаховых многообразий ). Результаты, полученные в рамках глобального анализа особых точек нашли широкое и для решения чисто топологических задач, такова, например, теорема периодичности Ботта , во многом послужившая основанием для самостоятельного раздела математики - K {\displaystyle K} -теории , а также теорема об h {\displaystyle h} -кобордизме , следствием которой является выполнение гипотезы Пуанкаре для размерности, превосходящей 4.

Ещё один крупный блок направлений глобального анализа, получивший широкое применение в физике и экономике - теория особенностей , теория бифуркаций и теория катастроф ; основное направление исследований данного блока - классификация поведений дифференциальных уравнений или функций в окрестностях критических точек и выявление характерных особенностей соответствующих классов.

Нестандартный анализ

Нестандартный анализ - формализация ключевых понятий анализа средствами математической логики , основная идея - формальная актуализация бесконечно больших и бесконечно малых величин, и логическая формализация манипуляций с ними. При этом средства нестандартного анализа оказываются весьма удобными: ими получены результаты, ранее не найденные классическими средствами из-за недостатка наглядности

Математические методы

Формализация и моделирование процессов сбора, движения и преобразования информации связаны с использованием математических методов, реализующих необходимые вычислительные и логические операции, в том числе и в автоматизированных информационных системах. Поэтому правовая информатика тесно связана с математикой и использует методы различных математических наук.

В последнее время при изучении информационных процессов в области права используется теория вероятностей, математическая статистика, математическая логика, исследование операций и многие другие математические науки и дисциплины. Математические методы, специфически преломляясь в теории права, обогащают и усиливают метод правовой науки, но, естественно, не заменяют его.

Сегодня можно говорить, что усилия специалистов, применяющих точные методы математики в правовой области, сосредоточены в двух направлениях: первое - это математическая обработка результатов правовых исследований; второе - исследование структуры права математическими методами. Эти направления составляют основу для создания и применения в правовой области различных автоматизированных систем обработки социально-правовой информации.

Первое направление разрабатывалось еще в 1775 г. Пьером Симоном Лапласом, предложившим использовать методы теории вероятностей для оценки свидетельских показаний, для анализа выборов и решений собраний и для определения вероятностей ошибок в судебных приговорах.

Его последователи Симеон Пуассон и Огюст Курно соответственно в 1837 г. и в 1877 г. опубликовали трактат «Исследование вероятности по материалам уголовных и гражданских судебных решений на основе общих правил исчисления вероятностей» и монографию «Основы теории шансов и вероятностей», в которой глава 15 была названа: «Теория вероятностей судебных решений. Применение ее к статистике гражданских дел». В США эстафету правометрических исследований принял профессор из Мичигана Дж. Шуберт, который в 1959 г. опубликовал работу «Количественный анализ судейского поведения». В 1961 г. Стюарт Нагель опубликовал ряд работ, среди которых «Ожидание вердикта» содержит количественный показатель возможности выиграть или проиграть иски, вытекающие из причинения вреда, в зависимости от наличия в деле целого ряда переменных, которые обрабатываются методом статистических обобщений.

В настоящее время в рамках этого направления успешно применяются различные математические методы для решения следующих задач: количественное описание правовых явлений; обеспечение учета и отчетности в правовой деятельности путем численной обработки различных статистических показателей.

Второе направление основано на идее сведения рассуждений к вычислениям и имеет глубокие исторические корни, восходящие к Р. Декарту. Он подразумевал возможность создания искусственного языка науки, дал его развернутую характеристику и тех громадных выгод, которые связаны с применением последнего. Декарт предполагал наличие некоторого природного порядка в наших мыслях, который сравнивал с порядком в мире чисел. При всем бесконечном множестве чисел каждое из них имеет единственное знаковое представление, следовательно, каждому из них можно дать собственное имя, что позволит действия с ними записывать особым компактным языком. Поскольку для чисел такой универсальный язык разработан, то, по мнению Декарта, со временем будет сконструирован еще более универсальный язык, охватывающий не только числа, но и любые объекты, которые могут стать предметом исследования. Такой язык позволит обозначать любые идеи путем выделения простых представлений и фиксации элементов, из которых состоит каждая мысль. Тем самым будет исключена любая возможность заблуждения. Такой язык противопоставит словам, имеющим неконкретное значение, четко определенные искусственные элементы. Вместо «давайте поспорим» ученые будут говорить «давайте вычислим».

Развитию идеи универсального языка науки большое внимание уделено в работах Г. Лейбница, который заложил фундамент математической логики. По Лейбницу, идеал общего метода, благодаря которому возможно будет систематизировать вечные истины, доказывать их, даже открывать новые, состоит в следующем:

1) необходимо разложить все понятия на простейшие, подобно тому, как в математике составные числа разлагаются на произведение простых множителей. Число простейших понятий в таком языке не может быть велико;

2) обозначив каждое из понятий особым символом, мы получим «алфавит человеческой мысли»;

3) всевозможные комбинации простых понятий дадут нам совокупность сложных. И хотя число первых невелико, однако, как показывают формулы комбинаторики, число их комбинаций может быть почти неисчерпаемым;

4) необходимо ввести особые символы для основных соотношений между понятиями и установить правила употребления и комбинации этих символов.

Таким образом, предполагалось процесс мышления свести к особого рода механическим исчислениям, чем, по существу, и занимается современная символическая логика.

Современная логика создала множество систем, описывающих отдельные фрагменты содержательных рассуждений. Для моделирования структуры правовых норм специально разработана «нормативная логика», предметом исследования которой являются логическая структура и логические связи нормативных высказываний.

Так, оценивая принципы логического моделирования структуры правовых норм, правоотношений и нормативных умозаключений, В. Кнапп и А. Герлох указывают, что лежащая в их основе классификация правовых норм является упрощенной абстракцией действительных правовых норм, носящих сложный характер. Например, исследуя сравнимость и совместимость правовых понятий, эти авторы приходят к выводу, что несравнимость понятий «наследственное право» и «избирательное право» нельзя доказать логическим рассуждением в рамках любой из логических теорий, поскольку наличие общего признака «право» делает формально сравнимыми эти понятия. Для доказательства несравнимости этих понятий, по мнению авторов, нельзя обойтись без аппарата теории права.

Другой вид формализации правовых норм основан на использовании математической логики для моделирования логической структуры правовой нормы.

Математическая логика - современный вид формальной логики, т.е. науки, изучающей умозаключения с точки зрения их формального строения.

Любая мысль в форме понятий, суждений или умозаключений не существует вне языка. Выявить и исследовать логические структуры можно лишь путем анализа языковых выражений.



Под высказыванием принято понимать некоторое предположение, о котором имеет смысл говорить, что оно истинно или ложно. Над высказываниями определены следующие операции:

· конъюнкция (логическое «и»);

· дизъюнкция (логическое «или»);

· отрицание (логическое «не»);

· импликация («если.., то…»).

Так, А.О. Гаврилов предложил, используя логические операции, провести моделирование логической структуры правовой нормы. Цель моделирования - выявить логические (включая латентные) связи правовой нормы. Логическая структура правовой нормы может быть представлена в следующем виде:

((p d ) → ˥ s ) → (˥ d s )

где p - гипотеза нормы;

d - диспозиция;

s - санкция.

Приведенная формализация языка права позволяет промоделировать и проанализировать некоторые правовые нормы с помощью такого нового класса автоматизированных систем правовой информации, как экспертные системы.

Однако необходимо отметить, что применение языка математики для формализации права существенно ограничено. Это определяется во многом тем, что, как признает А.Г. Ольшанецкий, «среди юристов не сложилось еще единого мнения о логической природе, логической специфике юридических понятий, их конструктивной роли в развитии науки правоведения, в образовании нормативно-правового детерминанта, его логического движения в регулятивном механизме общественных систем. Мнения ученых в этом отношении неоднозначны, имеют спорный, порой противоречивый характер. В частности, высказывается мнение, что определенной логической спецификой обладают лишь некоторые понятия уголовного права. В понятиях других отраслей права специфически юридического либо незначительно, либо его вообще нет... Им присущи лишь особенности внелогического характера. В структуре... их содержания, в характере признаков, образующих его, нет каких-либо особенностей, которые давали бы возможность выделить эти понятия в особый класс научных понятий».

По мнению О.А. Гаврилова, существует пять основных причин, по которым математика не может стать универсальным инструментом исследований в области права:

1. С ростом сложности и целостности социально-правового объекта значительно уменьшается возможность его расчленения на формализуемые элементы.

2. Основные категории общественных наук - это сложные, многогранные и многоплановые понятия, связанные множеством неформализуемых связей, таких как базис, надстройка, производительные силы, производственные отношения, государство, право, экономика, политика, демократия.

3. Государство и право, как явления классового общества, представляют собой целостные социально-политические системы. Они характеризуются большим числом качественных признаков и связей, которые не являются ни количественными, ни вероятностными, ни функциональными (в математическом смысле слова) и поэтому не поддаются математической формализации.

4. Проводя сравнительный анализ математических методов и традиционных средств юридической науки, нельзя не видеть их взаимодополняющей противоположности.

5. Отличительная особенность исследований, выполненных на базе традиционных качественных методов, - их всесторонность и многообразность, гибкость охвата явлений. Отличительная черта математических исследований - это их высокая точность. Применяя традиционные приемы юридической науки, исследователь-юрист получает выигрыш в полноте картины, но зато теряет все точности. И наоборот, применяя количественные методы исследования, он выигрывает в точности научного описания, зато теряет в его гибкости и всесторонности.

Следует отметить, что не все юристы придерживаются такой точки зрения. Так, В.П. Павлов, исследуя возможность математизации правовых исследований, не соглашается с высказанной выше точкой зрения О.А. Гаврилова.

По его мнению, история любой науки свидетельствует о том, что на начальном уровне познания, на котором производится накопление научных фактов о наблюдаемых свойствах изучаемых явлений и эмпирических закономерностях (в виде тенденций развития интересующего нас явления в практической жизни), используют приемы наблюдения, эксперимента, измерения, описания, способы обобщения, сравнения анализа и синтеза, классификацию и систематизацию. Для реализации этих способов в правоведении широко используют традиционные общенаучные методы, такие как философский, метод сравнительного правоведения, метод комплексного исследования. Однако подлинно теоретический уровень достигается в том случае, когда выдвигаются научные гипотезы, формулируются законы и создаются теории. Этому уровню соответствуют различные методы объяснения конкретных явлений, среди которых можно выделить гипотетические, структурные, функциональные, метод абстрагирования, включающий в себя идеализацию и обобщение некоторых понятий, и метод обоснования гипотез и построения теорий. Этот уровень достижим только путем привлечения математики как наиболее универсального инструмента анализа материального мира. Диалектическая связь этих двух уровней заключается в том, что установление эмпирических фактов как первоначальный этап познания всегда осуществляется на базе определенных теоретических знаний предшествующего уровня, а сами эмпирические факты являются базой для повышения уровня теоретического знания в исследуемой области. Поэтому взаимодополняющая связь традиционных и математических методов заключается не в их противоположности, а как раз в том, что их универсальность позволяет обеспечить наглядность, точность и полноту исследуемого явления. Благодаря этому расширяется поле для осмысления при помощи традиционных средств тех областей исследуемого явления, которые были скрыты от наблюдателя фрагментарностью эмпирической картины явления.

Таким образом, основным препятствием на пути математического описания правовых норм является неоднозначность понятийного аппарата юридической науки, которая многократно возрастает при некритичном использовании математических средств для его анализа. Противоречие состоит в том, что без применения математического аппарата невозможно обеспечить полноту и точность правовых исследований, а применение математического аппарата невозможно в условиях существующей неоднозначности понятийного аппарата права.

ВВЕДЕНИЕ. ДИСЦИПЛИНА ИССЛЕДОВАНИЕ ОПЕРАЦИЙ И ЧЕМ ОНА ЗАНИМАЕТСЯ

Формирование исследования операций как самостоятельной ветви прикладной математики относится к периоду 40-х и 50-х годов. Последу­ющие полтора десятилетия были отмечены широким применением полу­ченных фундаментальных теоретических результатов к разнообразным практическим задачам и связанным с этим переосмыслением потенци­альных возможностей теории. В результате исследование операций при­обрело черты классической научной дисциплины, без которой немыс­лимо базовое экономическое образование.

Обращаясь к задачам и проблемам, составляющим предмет исследо­вания операций, нельзя не вспомнить о вкладе, внесенном в их решение представителями отечественной научной школы, среди которых в пер­вую очередь должен быть назван Л. В. Канторович, ставший в 1975 г. лауреатом Нобелевской премии за свои работы по оптимальному ис­пользованию ресурсов в экономике.

Начало развития исследования операций как науки традицион­но связывают с сороковыми годами двадцатого столетия. Среди первых исследований в данном направлении может быть назва­на работа Л. В. Канторовича "Математические методы органи­зации и планирования производства", вышедшая в 1939 г. В за­рубежной литературе отправной точкой обычно считается вышедшая в 1947 г. работа Дж. Данцига, посвященная реше­нию линейных экстремальных задач.

Следует отметить, что не существует жесткого, устоявше­гося и общепринятого определения предмета исследования опе­раций. Часто при ответе на данный вопрос говорится, что "исследование операций представляет собой комплекс научных методов для решения задач эффективного управления организационными системами".

Второе определение: Исследование операций – это научная подготовка принимаемого решения – это совокупность методов, предлагаемых для подготовки и нахождения самых эффективных или самых экономичных решений.

Природа систем, фигурирующих в приведенном определении под именем "организационных", может быть самой различной, а их общие математические модели находят применение не толь­ко при решении производственных и экономических задач, но и в биологии, социологических исследованиях и других практи­ческих сферах. Кстати, само название дисциплины связано с применением математических методов для управления военны­ми операциями.

Несмотря на многообразие задач организационного управ­ления, при их решении можно выделить некоторую общую последовательность этапов, через которые проходит любое операционное исследование. Как правило, это:

1. Постановка задачи.

2. Построение содержательной (вербальной) модели рас­сматриваемого объекта (процесса). На данном этапе происходит формализация цели управления объектом, выделение возмож­ных управляющих воздействий, влияющих на достижение сфор­мулированной цели, а также описание системы ограничений на управляющие воздействия.

3. Построение математической модели, т. е. перевод сконст­руированной вербальной модели в ту форму, в которой для ее изучения может быть использован математический аппарат.

4. Решение задач, сформулированных на базе построенной математической модели.

5. Проверка полученных результатов на их адекватность природе изучаемой системы, включая исследование влияния так называемых внемодельных факторов, и возможная коррек­тировка первоначальной модели.

6. Реализация полученного решения на практике.

Центральное место в данном курсе отведено вопросам, отно­сящимся к четвертому пункту приведенной выше схемы. Это делается не потому, что он является самым важным, сложным или интересным, а потому, что остальные пункты существенно зависят от конкретной природы изучаемой системы, в силу чего для действий, которые должны производиться в их рамках, не могут быть сформулированы универсальные и содержательные рекомендации.

В самых разнообразных областях человеческой деятельности встречаются сходные между собой задачи: организация производства, эксплуатация транспорта, боевые действия, расстановка кадров, телефонная связь и т.д. Возникающие в этих областях задачи сходны между собой по постановке, обладают рядом общих признаков и решаются сходными методами.

Пример :

Организуется какое-то целенаправленное мероприятие (система действий), которое можно организовать тем или иным способом. Необходимо выбрать определенное решение из ряда возможных вариантов. Каждый вариант имеет преимущества и недостатки – сразу не ясно, какой из них предпочтительнее. С целью прояснить обстановку и сравнить между собой по ряду признаков различные варианты, организуется серия математических расчетов. Результаты расчетов показывают, на каком варианте остановится.

Математическое моделирование в исследовании операций является, с одной стороны, очень важным и сложным, а с дру­гой - практически не поддающимся научной формализации процессом. Заметим, что неоднократно предпринимавшиеся по­пытки выделить общие принципы создания математических мо­делей приводили либо к декларированию рекомендаций самого общего характера, трудноприложимых для решения конкрет­ных проблем, либо, наоборот, к появлению рецептов, примени­мых в действительности только к узкому кругу задач. Поэтому более полезным представляется знакомство с техникой математического моделирования на конкретных примерах.

1) План снабжения предприятия.

Имеется ряд предприятий, использующих различные виды сырья; имеется ряд сырьевых баз. Базы связаны с предприятиями различными путями сообщения (железные дороги, автотранспорт, водный, воздушный транспорт). Каждый транспорт имеет свои тарифы. Требуется разработать такой план снабжения предприятий сырьем, чтобы потребности в сырье были удовлетворены при минимальных расходах на перевозки.

2) Постройка участка магистрали.

Сооружается участок железнодорожной магистрали. В нашем распоряжении определенное количество средств: людей, техники и т.п. Требуется назначить очередность работ, распределить людей и технику по участкам пути таким образом, чтобы завершить строительство в минимальные сроки.

Выпускается определенный вид изделий. Для обеспечения высокого качества продукции требуется организовать систему выборочного контроля: определить размер контрольной партии, набор тестов, правила отбраковки и т.д. Требуется обеспечить заданный уровень качества продукции при минимальных расходах на контроль.

4) Военные действия.

Целью в данном случае является уничтожение вражеского объекта.

Подобные задачи встречаются в практике часто. Они имеют общие черты. В каждой задаче определена цель – цели эти похожи; заданы некоторые условия – в рамках этих условий и нужно принять решение, чтобы данное мероприятие было наиболее выгодным. В соответствии с этими общими чертами применяются и общие методы.

1. ОБЩИЕ ПОНЯТИЯ

1.1. Цель и основные понятия в исследованиях операций

Операция – это всякая система действий (мероприятие), объединенных единым замыслом и направленных к достижению какой-то цели. Это управляемое мероприятие, то есть от нас зависит, каким способом выбрать некоторые параметры, характеризующие его организацию.

Каждый определенный выбор зависящих от нас параметров называется решением.

Целью исследования операций является предварительное количественное обоснование оптимальных решений.

Те параметры, совокупность которых образует решение, называются элементами решения. В качестве элементов решения могут быть различные числа, векторы, функции, физически признаки и т.д.

Пример : перевозка однородного груза.

Существуют пункты отправления: А 1 , А 2 , А 3 ,…, А m .

Имеются пункты назначения: В 1 , В 2 , В 3 ,…, В n .

Элементами решения здесь будут числа x ij , показывающие, какое количество грузов будет отправлено из i-того пункта отправления в j -ый пункт назначения.

Совокупность этих чисел: x 11 , x 12 , x 13 ,…, x 1 m ,…, x n 1 , x n 2 ,…, x nm образует решение.

Чтобы сравнить между собой различные варианты, необходимо иметь какой-то количественный критерий – показатель эффективности (W ). Данный показатель называется целевой функцией.

Этот показатель выбирается так, чтобы он отражал целевую направленность операции. Выбирая решение, стремимся, чтобы данный показатель стремился к максимуму или к минимуму. Если W – доход, то W max; а если W – расход, то W min.

Если выбор зависит от случайных факторов (погода, отказ техники, колебания спроса и предложения), то в качестве показателя эффективности выбирается среднее значение – математическое ожидание – .

В качестве показателя эффективности иногда выбирают вероятность достижения цели. Здесь цель операции сопровождается случайными факторами и работает по схеме ДА-НЕТ.

Для иллюстрации принципов выбора показателя эффективности вернемся к рассмотренным ранее примерам:

1) План снабжения предприятия.

Показатель эффективности виден в цели. R – число – стоимость перевозок, . При этом все ограничения должны быть выполнены.

2) Постройка участка магистрали.

В задаче большую роль играют случайные факторы. В качестве показателя эффективности выбирают среднее ожидаемое время окончания стройки .

3) Выборочный контроль продукции.

Естественный показатель эффективности, подсказанный формулировкой задачи – это средние ожидаемые расходы на контроль за единицу времени, при условии, что система контролирует обеспечение заданного уровня качества.

Сопровождается физическим или математическим моделированием. Физическое моделирование... макетов и их трудоемкое исследование . Математическое моделирование осуществляют с использованием... на моделирование необходимо проделать следующие операции : 1. вход в меню...

  • Исследование интегрирующего и дифференцирующего усилителей на базе ОУ

    Лабораторная работа >> Коммуникации и связь

    Работы является экспериментальное исследование свойств и характеристик... это одна из основных математических операций и ее электрическая реализация... ДБ Осциллограммы выходных напряжений при исследованиях в импульсном режиме: Интегрирующий усилитель...

  • Математические методы в экономическом анализе

    Контрольная работа >> Экономико-математическое моделирование

    Некоторые методы математического программирования и методы исследования операций , к оптимизационным приближенным - часть методов математического программирования, исследования операций , экономической...

  • Математические игры как средство развития логического мышления

    Дипломная работа >> Педагогика

    Развитие логического мышления. Предмет исследования : математические игры с помощью которых... действий с использованием логических операций . Умственные действия образуют... практических компонентов работы. Сложные операции абстрактного мышления переплетаются с...

  • Суть и определение математических методов исследования экономики

    Определение 1

    Экономико-математическое моделирование - это концентрированное выражение наиболее существенных взаимосвязей и закономерностей поведения управляемой системы в математической форме.

    На сегодняшний день существует целый ряд видов и модификаций методов экономико-математического моделирования. В системе управления инновационным развитием промышленного предприятия применяется значительное их количество. Рассмотрим основные классификационные подходы к методам моделирования.

    По отрасли и целью использования методы экономико-математического моделирования различают на:

    1. теоретико-аналитические - анализируют общие свойства и закономерности;
    2. прикладные - применяются при решении конкретных экономических задач анализа и управления.

    Классификация методов моделирования

    По типу подхода к социально-экономическим системам: дескриптивные модели - предназначены для описания и объяснения явлений, которые фактически наблюдаемых или для прогноза этих явлений; нормативные модели - показывает развитие экономической системы в разрезе влияния определенных критериев.

    По способу отражения реальных объектов: функциональные модели - субъект моделирования пытается достичь сходства модели и оригинала только в понимании того, что они выполняют те же функции; структурные модели - субъект моделирования пытается воссоздать внутреннюю построение моделируемой, и за счет более точного отображения структуры получить более точное отображение функции.

    По учету фактора времени: статические модели - все зависимости относятся к одному моменту времени; динамические модели - описывают экономические системы в развитии. По типу используемой в модели: аналитические модели - задаются на основе априорной информации, строятся с учетом существующих закономерностей, записанных в формально-теоретическом виде; модели, идентифицируются - построены на результатах наблюдений за объектами.

    По ступеням использования типовых элементов: модели с фиксированной структурой - процесс моделирования сводится к подбору и настройке значений параметров типовых блоков; модели с переменной структурой - структура модели создается при моделировании и не является типичной.

    По характеристике математических объектов, включенных в модели (особенности каждого вида обусловлены типом математического аппарата, используемого в модели): матричные модели; структурные модели; сетевые модели; модели линейного и нелинейного программирования; факторные модели; комбинированные; модели теории игр и т.д.

    По способу представления или описания модели: модели, представленные в аналитической форме - модели подаются на языке математики; модели, представленные в виде алгоритма - реализуются численно или с помощью программного обеспечения; имитационные модели - численная реализация соотношений, составляющих модель, осуществляется без предварительных преобразований, в процессе имитации алгоритм расчетов воспроизводит логику функционирования объекта-оригинала.

    По ожидаемым результатом: модели, в которых минимизируются затраты - ожидаемый конечный результат опирается на минимизацию затрат; модели, в которых минимизируется конечный результат - модели, в которых целью поставлено уменьшение показателей, характеризующих объект исследования (если эти показатели направлены до максимума) или увеличить значение показателей (если эти показатели направлены в минимизации).

    Место математических методов исследования в управлении предприятием

    При изучении методов экономико-математического моделирования в разрезе прогнозирования инновационного развития промышленных предприятий возникает необходимость их адаптации к реальным экономическим условиям современности, выдвигает рыночную среду и основы стратегического маркетингового управления. Так, формализованные методы прогнозирования целесообразно сочетать с аналитическими методами, которые могут качественно охватить всю проблематику рыночной среды.

    Замечание 1

    Экономико-математические модели оптимизации включают одну целевую функцию, формализует критерий оптимальности, по которому среди допустимых планов выбирается наилучший, а ограничения по переменных определяют множество допустимых планов.

    Так, составным элементом текущего плана предприятия является план производства или производственная программа, включает систему плановых показателей производства по объему, ассортименту и качеству продукции. Ведь важным этапом разработки производственной программы является формирование оптимальной структуры портфеля продукции предполагает определение такого объема, номенклатуры и ассортимента продукции, которые бы обеспечили предприятию эффективное использование имеющихся ресурсов и получения удовлетворительного финансового результата.

    Утверждение портфеля продукции и ресурсов на ее изготовление происходит благодаря применению экономико-математических методов, к которым предъявляются определенные требования. Прежде всего, они должны быть тождественными внешним условиям рынка, а также учитывать разнообразие путей достижения главной цели предприятия - максимизации прибыли.